Application of Ohmic Heating Method as an Alternative Technology for Beverage Processing
Abstract
Background: Ohmic heating is an alternative thermal heating that can be used in beverage product processing. The working principle of the ohmic heating method is by flowing an alternating electric current through the beverage product and causing ions to move towards electrodes with opposite charges so that the product has an even internal heat. Purpose: This study aims to analyze the influence and potential emission, advantages and challenges regarding the use of the ohmic heating method and its future applications. Method: This paper summarizes the effect of ohmic heating on beverage products during 2015-2025. This study uses variables in the form of voltage and frequency variations applied to various types of processed beverage products. In ohmic heating performance, voltage and frequency variations play a very important role in beverage processing. Results: The results show that the use of ohmic heating methods in beverage product processing has low energy consumption, even (homogeneous) heat, short time, increased product safety and quality. The ohmic heating method affects the properties of beverage products. Differences in process objectives in the use of beverage products such as boiling, cooking, pasteurization, microbiological inactivation, sterilization can also affect the level of product quality and safety so that knowledge is needed regarding the application of the right temperature, frequency, voltage and time according to the type and purpose of processed beverage products. However, the application of ohmic heating methods still faces many obstacles, such as high costs that limit its commercial use at a larger scale. Furthermore, most research is still conducted at the laboratory and pilot scale, with very little research at the factory scale. Therefore, more research is needed into large-scale ohmic heating applications to evaluate potential technical and economic challenges.
References
Ahmad, T., Butt, M. Z., Aadil, R. M., Inam-ur-Raheem, M., Abdullah, Bekhit, A. E. D., Guimarães, J. T., Balthazar, C. F., Rocha, R. S., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Sameen, A., & Cruz, A. G. (2019). Impact of nonthermal processing on different milk enzymes. International Journal of Dairy Technology, 72(4), 481–495. https://doi.org/10.1111/1471-0307.12622
Ak, F., Karakavuk, E., Goksu, A., & Sabancı, S. (2024). An innovative approach in oat milk production: Ohmic heating. Food and Bioproducts Processing, 148(July), 421–427. https://doi.org/10.1016/j.fbp.2024.10.011
Bahrami, A., Moaddabdoost Baboli, Z., Schimmel, K., Jafari, S. M., & Williams, L. (2020). Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science and Technology, 96(October 2019), 61–78. https://doi.org/10.1016/j.tifs.2019.12.009
Balthazar, C. F., Teixeira, S., Bertolo, M. R. V., Ranadheera, C. S., Raices, R. S. L., Russo, P., Spano, G., Junior, S. B., Cruz, A. G., & Sant’Ana, A. S. (2024). Functional benefits of probiotic fermented dairy drink elaborated with sheep milk processed by ohmic heating. Food Bioscience, 59(March), 103781. https://doi.org/10.1016/j.fbio.2024.103781
Bansode, S., Ranveer, R. C., Tapre, A. R., Ganorkar, P. M., Sadale, S. B., & Sahoo, A. K. (2019). Enzymatic Clarification and Preservation of Aloe vera Juice by Ohmic Heating. Current Journal of Applied Science and Technology, June, 1–9. https://doi.org/10.9734/cjast/2019/v35i630204
Basak, S., Thakur, P., & Chakraborty, S. (2024). Pasteurization of mandarin juice by ohmic heating and evaluation of its shelf-life under refrigerated and ambient conditions. Sustainable Food Technology, 3(1), 239–252. https://doi.org/10.1039/d4fb00267a
Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., Cunha, R. L., Oliveira, C. A. F., Mercali, G. D., Marzack, L. D. F., & Cruz, A. G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104–112. https://doi.org/10.1016/j.tifs.2017.01.010
Cho, E., & Kang, D. (2025). Bacterial inactivation and bactericidal mechanisms of pulsed ohmic heating against foodborne pathogens in milk depending on the applied frequency. Journal of Food Engineering, 403(July 2025), 112729. https://doi.org/10.1016/j.jfoodeng.2025.112729
Coimbra, L. O., Vidal, V. A. S., Silva, R., Rocha, R. S., Guimarães, J. T., Balthazar, C. F., Pimentel, T. C., Silva, M. C., Granato, D., Freitas, M. Q., Pollonio, M. A. R., Esmerino, E. A., & Cruz, A. G. (2020). Are ohmic heating-treated whey dairy beverages an innovation? Insights of the Q methodology. Lwt, 134(July). https://doi.org/10.1016/j.lwt.2020.110052
Darvishi, H., Salami, P., Fadavi, A., & Saba, M. K. (2020). Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food and Bioproducts Processing, 123, 102–110. https://doi.org/10.1016/j.fbp.2020.06.003
Doan, N. K., Lai, Q. D., Le, T. K. P., & Le, N. T. (2021). Influences of AC frequency and electric field strength on changes in bioactive compounds in Ohmic heating of pomelo juice. Innovative Food Science and Emerging Technologies, 72(July), 102754. https://doi.org/10.1016/j.ifset.2021.102754
Fadavi, A., Yousefi, S., Darvishi, H., & Mirsaeedghazi, H. (2018). Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. Innovative Food Science and Emerging Technologies, 47(March), 225–230. https://doi.org/10.1016/j.ifset.2018.03.004
Ferreira, M. V. S., Cappato, L. P., Silva, R., Rocha, R. S., Neto, R. P. C., Tavares, M. I. B., Esmerino, E. A., Freitas, M. Q., Bissagio, R. C., Ranadheera, S., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2019). Processing raspberry-flavored whey drink using ohmic heating: Physical, thermal and microstructural considerations. Food Research International, 123(February), 20–26. https://doi.org/10.1016/j.foodres.2019.04.045
Figueroa-Ducoing, B. K., Carrillo-Sanchez, A. K., Rivera-Gutierrez, S., Rios-Muñiz, D., Estrada-Garcia, T., & Cerna-Cortes, J. F. (2022). In Mexico City, fresh-squeezed street-vended orange juice is contaminated with fecal coliforms, Escherichia coli, and Shiga toxin-producing E. coli: A potential risk for acquiring foodborne diseases. Food Science and Technology (Brazil), 42, 1–6. https://doi.org/10.1590/fst.52022
Funcia, E. S., Gut, J. A. W., & Sastry, S. K. (2020). Effect of Electric Field on Pectinesterase Inactivation During Orange Juice Pasteurization by Ohmic Heating. Food and Bioprocess Technology, 13(7), 1206–1214. https://doi.org/10.1007/s11947-020-02478-x
Griffen, C., Duncan, M., Hattersley, J., Weickert, M. O., Dallaway, A., & Renshaw, D. (2022). Effects of resistance exercise and whey protein supplementation on skeletal muscle strength, mass, physical function, and hormonal and inflammatory biomarkers in healthy active older men: a randomised, double-blind, placebo-controlled trial. Experimental Gerontology, 158(September 2021), 111651. https://doi.org/10.1016/j.exger.2021.111651
Hashemi, S. M. B., Gholamhosseinpour, A., & Niakousari, M. (2019). Application of microwave and ohmic heating for pasteurization of cantaloupe juice: microbial inactivation and chemical properties. Journal of the Science of Food and Agriculture, 99(9), 4276–4286. https://doi.org/10.1002/jsfa.9660
Hashemi, S. M. B., & Roohi, R. (2019). Ohmic heating of blended citrus juice: Numerical modeling of process and bacterial inactivation kinetics. Innovative Food Science and Emerging Technologies, 52(December 2018), 313–324. https://doi.org/10.1016/j.ifset.2019.01.012
Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science and Emerging Technologies, 58(October), 102233. https://doi.org/10.1016/j.ifset.2019.102233
Kaur, M., Kumar, S., & Samota, M. K. (2023). Ohmic heating technology systems, factors governing efficiency and its application to inactivation of pathogenic microbial, enzyme inactivation, and extraction of juice, oil, and bioactive compounds in the food sector. Food and Bioprocess Technology, 17(2), 1–26. https://doi.org/http://dx.doi.org/10.1007/s11947-023-03126-w
Kim, N. H., Ryang, J. H., Lee, B. S., Kim, C. T., & Rhee, M. S. (2017). Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology, 246, 80–84. https://doi.org/10.1016/j.ijfoodmicro.2017.01.002
Kim, S. S., Park, S. H., & Kang, D. H. (2018). Application of continuous-type pulsed ohmic heating system for inactivation of foodborne pathogens in buffered peptone water and tomato juice. Lwt, 93(March), 316–322. https://doi.org/10.1016/j.lwt.2018.03.032
Kim, S. S., Park, S. H., Kim, S. H., & Kang, D. H. (2019). Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice. Food Control, 102(November 2018), 69–75. https://doi.org/10.1016/j.foodcont.2019.03.011
Klunklin, W., & Savage, G. (2017). Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6(8), 1–10. https://doi.org/10.3390/foods6080056
Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2017). Enzyme inactivation of tomato juice by ohmic heating and its effects on physico-chemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40(3), 1–10. https://doi.org/10.1111/jfpe.12464
Melero, B., Stessl, B., Manso, B., Wagner, M., Esteban-Carbonero, Ó. J., Hernández, M., Rovira, J., & Rodriguez-Lázaro, D. (2019). Listeria monocytogenes colonization in a newly established dairy processing facility. International Journal of Food Microbiology, 289(September 2018), 64–71. https://doi.org/10.1016/j.ijfoodmicro.2018.09.003
Mullan, W. M. A. (2019). Are we closer to understanding why viable cells of Mycobacterium avium subsp. paratuberculosis are still being reported in pasteurised milk? International Journal of Dairy Technology, 72(3), 332–344. https://doi.org/10.1111/1471-0307.12617
Müller, W. A., Ferreira Marczak, L. D., & Sarkis, J. R. (2020). Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends in Food Science and Technology, 99(March), 650–659. https://doi.org/10.1016/j.tifs.2020.03.021
Norouzi, S., Fadavi, A., & Darvishi, H. (2021). The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors. Journal of Food Engineering, 291(May 2020), 110242. https://doi.org/10.1016/j.jfoodeng.2020.110242
Park, I. K., Ha, J. W., & Kang, D. H. (2017). Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice. BMC Microbiology, 17(1), 1–8. https://doi.org/10.1186/s12866-017-1029-z
Pavón-Vargas, D., Simkova, K., Puzović, A., Moreno-Barreto, A., Gędas, A., Murray, H., Rabeeah, I., Rincon-Bermeo, J. S., Anh Truong, N. Q., Zavarise, A., Zia, H., Sandei, L., Rinaldi, M., Georgé, S., Gozzi, M., Gössinger, M., Guski, S., Humel, S., Jakopic, J., … Cattani, L. (2025). Comparative Analysis of Aroma and Phenolic Compounds in Strawberry Nectar Subjected to Equivalent Thermal, Ohmic Heating, High Pressure, and Pulsed Electric Fields Processes at Pilot Scale. Lwt, 228(June), 118066. https://doi.org/10.1016/j.lwt.2025.118066
Pereira, M. O., Guimarães, J. T., Ramos, G. L. P. A., do Prado-Silva, L., Nascimento, J. S., Sant’Ana, A. S., Franco, R. M., & Cruz, A. G. (2020). Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. Lwt, 127(April), 109420. https://doi.org/10.1016/j.lwt.2020.109420
Rocha, R. S., Silva, R., Ramos, G. L. P., Cabral, L. A., Pimentel, T. C., Campelo, P. H., Blumer Zacarchenco, P., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2022). Ohmic heating treatment in high-protein vanilla flavored milk: Quality, processing factors, and biological activity. Food Research International, 161(June). https://doi.org/10.1016/j.foodres.2022.111827
Rodrigues, N. P., Brochier, B., de Medeiros, J. K., Marczak, L. D. F., & Mercali, G. D. (2021). Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chemistry, 347(January), 129058. https://doi.org/10.1016/j.foodchem.2021.129058
Rodríguez, L. M. N., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L., Tacca, H., Aimaretti, N., Rojas Cervantes, M. L., & Szerman, N. (2021). Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. Lwt, 145(November 2020). https://doi.org/10.1016/j.lwt.2021.111255
Sabanci, S., & Icier, F. (2022). Evaluation of an ohmic assisted vacuum evaporation process for orange juice pulp. Food and Bioproducts Processing, 131, 156–163. https://doi.org/10.1016/j.fbp.2021.09.009
Sadler, C. R., Grassby, T., Hart, K., Raats, M., Sokolović, M., & Timotijevic, L. (2021). Processed food classification: Conceptualisation and challenges. Trends in Food Science and Technology, 112(February 2020), 149–162. https://doi.org/10.1016/j.tifs.2021.02.059
Sain, M., Minz, P. S., John, H., & Singh, A. (2024). Effect of Ohmic Heating on Food Products: An In-Depth Review Approach Associated with Quality Attributes. Journal of Food Processing and Preservation, 2024(Figure 1). https://doi.org/10.1155/2024/2025937
Silva, R., Rocha, R. S., Ferreira, M. V. S., Ramos, G. L. P. A., Arruda, H. S., Borsoi, F. T., Maria Pastore, G., Freitas, M. Q., & Cruz, A. G. (2024). Evaluating the galactooligosaccharide stability in chocolate milk beverage submitted to ohmic heating. Food Research International, 188(March), 114429. https://doi.org/10.1016/j.foodres.2024.114429
Singh, S. K., Çokgezme, Ö. F., Ali, M. M., Yousef, A. E., Balasubramaniam, V. M., & Sastry, S. (2025). Ohmic heating inactivation of Alicyclobacillus acidoterrestris spores in apple and cranberry juice. Innovative Food Science and Emerging Technologies, 102(March). https://doi.org/10.1016/j.ifset.2025.104010
Sitorus, E. M., & Mela, E. (2022). Pengendalian Mutu Statistik Susu Ultra High Temperature (UHT) di PT XYZ. Indonesian Journal of Food Technology, 1(1), 24–45.
Stojceska, V., Atuonwu, J., & Tassou, S. A. (2019). Ohmic and conventional drying of citrus products: Energy efficiency, greenhouse gas emissions and nutritional properties. Energy Procedia, 161, 165–173. https://doi.org/10.1016/j.egypro.2019.02.076
Suebsiri, N., Kokilakanistha, P., Laojaruwat, T., Tumpanuvatr, T., & Jittanit, W. (2019). The application of ohmic heating in lactose-free milk pasteurization in comparison with conventional heating, the metal contamination and the ice cream products. Journal of Food Engineering, 262(November 2018), 39–48. https://doi.org/10.1016/j.jfoodeng.2019.05.017
Tian, X., Yu, Q., Wu, W., & Dai, R. (2018). Inactivation of microorganisms in foods by ohmic heating: A review. Journal of Food Protection, 81(7), 1093–1107. https://doi.org/10.4315/0362-028X.JFP-17-343
Voutilainen, E. K., Hantunen, S., Ruusunen, A., Tuomainen, T. P., & Virtanen, J. K. (2022). Associations of fermented and non-fermented dairy consumption with serum C-reactive protein concentrations – A cross-sectional analysis. Clinical Nutrition ESPEN, 48, 401–407. https://doi.org/10.1016/j.clnesp.2022.01.011
Wu, D., Forghani, F., Daliri, E. B. M., Li, J., Liao, X., Liu, D., Ye, X., Chen, S., & Ding, T. (2020). Microbial response to some nonthermal physical technologies. Trends in Food Science and Technology, 95(November 2019), 107–117. https://doi.org/10.1016/j.tifs.2019.11.012







