Immunomodulator and Antioxidant Effects of Saffron (Crocus sativus L.) on Diabetes Patients: a Literature Study
Abstract
Background: Saffron (Crocus sativus L.) has been traditionally used for its medicinal properties, including its potential to improve sleep quality and reduce anxiety. Recent studies have shown its potential in diabetes management, particularly through antioxidant and anti-inflammatory effects. Purpose: The aim of this study is to review the benefits of saffron in diabetes mellitus patients, both in experimental animals and humans. Method: A literature review method was used to analyze studies examining saffron’s effects on diabetes sufferers. Result: The results showed that saffron supplementation significantly reduced blood glucose levels, decreased oxidative stress markers such as malondialdehyde (MDA), and increased the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD). Furthermore, saffron also enhances the expression of glucose transporter GLUT4 and AMP-activated protein kinase (AMPK). Saffron shows significant potential in managing diabetes by improving glucose metabolism, boosting antioxidant defenses, and reducing inflammation.
References
American Diabetes Association. (2022). Standards of medical care in diabetes—2022 abridged for primary care providers. Clinical Diabetes, 40(1), 10–38. https://doi.org/10.2337/cd22-as01
Arasteh, A., Aliyev, A., Khamnei, S., Delazar, A., Mesgari, M., & Mehmannavaz, Y. (2010). Effects of hydromethanolic extract of saffron (Crocus sativus) on serum glucose, insulin, and cholesterol levels in healthy male rats. Journal of Medicinal Plants Research, 4, 397–402.
Azimi, P., Ghiasvand, R., Feizi, A., Hosseinzadeh, J., Bahreynian, M., Hariri, M., & Khosravi-Boroujeni, H. (2016). Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Pressure, 25(3), 133–140. https://doi.org/10.3109/08037051.2015.1111020
Caballero-Ortega, H., Pereda-Miranda, R., & Abdullaev, F. I. (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 100(3), 1126–1131. https://doi.org/10.1016/j.foodchem.2005.11.020
Cerdá-Bernad, D., Valero-Cases, E., Pastor, J. J., & Frutos, M. J. (2022). Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Critical Reviews in Food Science and Nutrition, 62(12), 3232–3249. https://doi.org/10.1080/10408398.2020.1865288
Dehghan, F., Hajiaghaalipour, F., Yusof, A., et al. (2016). Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in vitro and in vivo. Scientific Reports, 6, 25139. https://doi.org/10.1038/srep25139
DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. The Lancet, 391(10138), 2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5
Ebrahimi, F., Sahebkar, A., Aryaeian, N., Pahlavani, N., Fallah, S., Moradi, N., Abbasi, D., & Hosseini, A. F. (2019). Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: A double-blind, placebo-controlled trial. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 2107–2115. https://doi.org/10.2147/DMSO.S216666
Faridi, S., Delirezh, N., & Abtahi Froushani, S. M. (2019). Beneficial effects of hydroalcoholic extract of saffron in alleviating experimental autoimmune diabetes in C57BL/6 mice. Iranian Journal of Allergy, Asthma and Immunology, 18, 38–47.
Gohari, A., Saeidnia, S., & Mahmoodabadi, M. (2013). An overview on saffron, phytochemicals, and medicinal properties. Pharmacognosy Reviews, 7(13), 61–66. https://doi.org/10.4103/0973-7847.112850
Gregg, E. W., Zhuo, X., Cheng, Y. J., Albright, A. L., Narayan, K. V., & Thompson, T. J. (2014). Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: A modelling study. The Lancet Diabetes & Endocrinology, 2(11), 867–874. https://doi.org/10.1016/S2213-8587(14)70161-5
Kang, C., Lee, H., Jung, E. S., Seyedian, R., Jo, M., Kim, J., & Kim, E. (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chemistry, 135(4), 2350–2358. https://doi.org/10.1016/j.foodchem.2012.06.089
Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Al Kaabi, J. (2020). Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10(1), 107–111. https://doi.org/10.2991/jegh.k.191028.001
Kooti, W., Farokhipour, M., Asadzadeh, Z., Ashtary-Larky, D., & Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: A systematic review. Electronic Physician, 8(1), 1832–1842. https://doi.org/10.19082/1832
Maqbool, M., Dar, M. A., Gani, I., Mir, S. A., & Khan, M. (2019). Herbal medicines as an alternative source of therapy: A review. World Journal of Pharmaceutical and Pharmaceutical Sciences, 3, 374–380.
Motamedrad, M., Shokouhifar, A., Hemmati, M., & Moossavi, M. (2019). The regulatory effect of saffron stigma on the gene expression of glucose metabolism key enzymes and stress proteins in streptozotocin-induced diabetic rats. Research in Pharmaceutical Sciences, 14, 255–262. https://doi.org/10.4103/1735-5362.258492
Nassar, S. A., Hashim, A. M., Al-Shaer, N. H., & Abd El-Salam, S. M. (2019). The ameliorative potential of saffron against histological and immunohistochemical changes in kidney of albino mice due to streptozotocin-induced diabetes mellitus. Egyptian Journal of Hospital Medicine, 77, 5733–5741.
Ojo, O. A., Ibrahim, H. S., Rotimi, D. E., Ogunlakin, A. D., & Ojo, A. B. (2023). Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Medicine in Novel Technology and Devices, 19, 100247. https://doi.org/10.1016/j.medntd.2023.100247
Ouahhoud, S., Lahmass, I., Bouhrim, M., Khoulati, A., Sabouni, A., Benabbes, R., et al. (2019). Antidiabetic effect of hydroethanolic extract of Crocus sativus stigmas, tepals and leaves in streptozotocin-induced diabetic rats. Physiology and Pharmacology, 23, 9–20.
Samarghandian, S., Azimi-Nezhad, M., & Farkhondeh, T. (2017). Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart Journal, 69(2), 151–159. https://doi.org/10.1016/j.ihj.2016.12.007
Shahdadi, H., Balouchi, A., & Dehghanmehr, S. (2017). Effect of saffron oral capsule on anxiety and quality of sleep of diabetic patients in a tertiary healthcare facility in southeastern Iran: A quasi-experimental study. Tropical Journal of Pharmaceutical Research, 16(11), 2749–2753. https://doi.org/10.4314/tjpr.v16i11.23
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., & Magliano, D. J. (2022). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119







