Extraction techniques for phenolic compounds from Zingiber officinale: a review of traditional, microwave-assisted, and ultrasound-assisted methods

Abstract

Background: The rhizome of Zingiber officinale (ginger) is widely recognized for its pharmacological properties, particularly its antioxidant activity, which is largely attributed to phenolic compounds such as gingerol, shogaol, paradol, and zingerone. Efficient extraction of these compounds requires suitable techniques to maximize yield while maintaining compound stability.


Objective: This review aims to evaluate extraction techniques for phenolic compounds from ginger rhizomes, comparing traditional and modern approaches, and to identify methods that produce the highest total phenolic content (TPC).


Methods: A literature review was conducted on original research articles published between 2015 and 2025 that reported phenolic extraction from Z. officinale using maceration, soxhlet extraction, reflux, microwave-assisted extraction (MAE), or ultrasound-assisted extraction (UAE). Articles were retrieved from Google Scholar and ScienceDirect databases and assessed against defined inclusion and exclusion criteria.


Results: Six eligible studies were included, revealing substantial methodological heterogeneity that complicates direct method comparisons. UAE with 50% ethanol produced the highest TPC (155.19 ± 2.81 mg GAE/g dry weight), followed by Soxhlet extraction (31.10 ± 0.28 mg GAE/g) and MAE (27.89 ± 1.99 mg GAE/g). Reflux and maceration yielded comparatively lower TPC values, with results influenced by solvent type, concentration, temperature, and extraction time.


Conclusion: UAE with 50% ethanol is the most effective technique for extracting phenolic compounds from ginger, offering both high yield and compound stability. MAE, while producing lower yields, remains advantageous for its shorter extraction duration.

References

1. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., , Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry. 2023, 11(1), 1-24. https://doi.org/10.3389/fchem.2023.1158198

2. Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O., Alshahrani, M. Y., Islam, S., , Islam, M. R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Research International, 2022(1), 1-9. https://doi.org/10.1155/2022/5445291

3. Ayustaningwarno, F., Anjani, G., Ayu, A. M., , Fogliano, V. A critical review of Ginger's (Zingiber officinale) antioxidant, immunomodulatory activities. Frontiers in Nutrition.2024, 1(1), 1-16. https://doi.org/10.3389/fnut.2024.1364836

4. Verma, R., , Bisen, P. S. Ginger–a potential source of therapeutic and pharmace. Journal of Food Bioactives. 2022,1(18), 67-76. https://doi.org/10.31665/JFB.2022.18309

5. Samota, M. K., Rawat, M., Kaur, M., , Garg, D. Gingerol: extraction methods, health implications, bioavailability and signaling pathways. Sustainable Food Technology Review. 2024, 2(1), 1652-1669. https://doi.org/10.1039/D4FB00135D

6. Pereira, A. G., Cruz, L., Cassani, L., Chamorro, F., Lourenço-lopes, C., Freitas, V. et al. Comparative Study of Microwave-Assisted Extraction and Ultrasound-Assisted Extraction Techniques (MAE vs . UAE) for the Optimized Production of Enriched Extracts in Phenolic Compounds of Camellia japonica var Eugenia de Montijo. Engineering Proceedings. 2023, 1(37), 1-6. https://doi.org/10.3390/ECP2023-14615

7. Ahmadi, S., Kian, S. P., New, M. M.-I. Response Surface Methodology Applied to the Supercritical Carbon Dioxide Extraction of Zingiber officinale Oleoresin. International Journal of New Chemistry. 2025, 12(5), 972-994.

8. Jorge-Montalvo, P., Vílchez-Perales, C., Visitación-Figueroa, L. Evaluation of antioxidant capacity, structure, and surface morphology of ginger (Zingiber officinale) using different extraction methods. Heliyon. 2023, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16516

9. Andriyani, R., Budiati, T. A., Pudjiraharti, S. Effect of extraction method on total flavonoid, total phenolic content, antioxidant and anti-bacterial activity of Zingiberis officinale rhizome. Procedia Chemistry. 2015, 16(1), 149-154. https://doi.org/10.1016/j.proche.2015.12.023

10. Makanjuola, S. A., Enujiugha, V. N. Modelling and prediction of selected antioxidant properties of ethanolic ginger extract. Food Measure. 2018, 12.12(2), 1413-1419. https://doi.org/10.1007/s11694-018-9756-x

11. Jan, R., Gani, A., Masarat Dar, M., , Bhat, N. A. Bioactive characterization of ultrasonicated ginger (Zingiber officinale) and licorice (Glycyrrhiza Glabra) freeze dried extracts. Ultrasonics Sonochemistry. 2022, 88(1), 106048. https://doi.org/10.1016/j.ultsonch.2022.106048

12. Huyen, T. T., Quoc, L. P. T. Optimization of microwave-assisted extraction of phenolic compounds from ginger (Zingiber officinale Rosc.) using response surface methodology. Herba Polonica. 2020, 66(2), 19-27. https://doi.org/10.2478/hepo-2020-0007

13. Patel, M., Dave, K., , Patel, P. H. Review on Different Extraction Method of Plants: Innovation From Ancient To Modern Technology. International Journal of Biology, Pharmacy and Allied Sciences. 2021, 10(12 (special issue)). https://doi.org/10.31032/IJBPAS/2021/10.12.1044

14. Usman, I., Hussain, M., Imran, A., Afzaal, M., Saeed, F., Javed, M., Afzal, A., Ashfaq, I., Al Jbawi, E., A. Saewan, S. Traditional and innovative approaches for the extraction of bioactive compounds. International Journal of Food Properties. 2022, 25(1), 1215-1233. https://doi.org/10.1080/10942912.2022.2074030

15. Poojar, B., Ommurugan, B., Adiga, S., Thomas, H., Sori, R. K., Poojar, B., et al. Methodology Used in the Study. Asian Journal of Pharmaceutical and Clinical Research. 2017, 7(10), 1-5. https://doi.org/10.4103/jpbs.JPBS

16. Plaskova, A., Mlcek, J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition. 2023,
https://doi.org/10.3389/fnut.2023.1118761

17. Goti, D., Dasgupta, D. S. A comprehensive review of conventional and non-conventional solvent extraction techniques. Journal of Pharmacognosy and Phytochemistry. 2023, 12(3), 202-211. https://doi.org/10.22271/phyto.2023.v12.i3c.14682

18. Cha, J., Kim, C. T., , Cho, Y. J. Optimizing extraction conditions for functional compounds from ginger (Zingiber officinale Roscoe) using response surface methodology. Food Sci Biotechnol. 2019 Sep 4;29(3):379-385. https://doi.org/10.1007/S10068-019-00667-9

19. Mehta, N., S, J., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., et al. Extracción asistida por ultrasonidos y encapsulación de componentes bioactivos para aplicaciones alimentarias. Foods. 2022, 11(19), 1-35. https://doi.org/10.3390/foods11192973

20. Nonglait, D. L., Gokhale, J. S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food and Bioprocess Technology, 2024, 17(7), 1681-1705. https://doi.org/10.1007/s11947-023-03192-0

21. An, K., Wei, L., Fu, M., Cheng, L., Peng, J., , Wu, J. Effect of carbonic maceration (CM) on the vacuum microwave drying of Chinese ginger (Zingiber officinale Roscoe) slices: Drying characteristic, moisture migration, antioxidant activity, and microstructure. Food and Bioprocess Technology. 2020, 13(9), 1661-1674. https://doi.org/10.1007/s11947-020-02504-y
Published
2025-08-28
How to Cite
FEBRIANI, Ni Kadek Dwi; SUSANTI, Ni Made Pitri; DEWI, Luh Putu Mirah Kusuma. Extraction techniques for phenolic compounds from Zingiber officinale: a review of traditional, microwave-assisted, and ultrasound-assisted methods. Acta Pharmaciae Indonesia : Acta Pharm Indo, [S.l.], v. 13, n. 1, p. 17252, aug. 2025. ISSN 2621-4520. Available at: <https://jos.unsoed.ac.id/index.php/api/article/view/17252>. Date accessed: 06 sep. 2025. doi: https://doi.org/10.20884/1.api.2025.13.1.17252.