Unveiling Regional Growth Patterns Spatial Heterogeneity and Infrastructure Quality under a Bayesian Framework in Central Java

  • Suripto Suripto Faculty of Economics and Business, Ahmad Dahlan University
  • Agus Salim Faculty of Economics and Business, Ahmad Dahlan University
  • Mahrus Lutfi Adi Kurniawan Faculty of Economics and Business, Ahmad Dahlan University
  • Uswatun Khasanah Faculty of Economics and Business, Ahmad Dahlan University
  • Azkal Azkiya Athfal Faculty of Engineering, Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada

Abstract

: This study investigates the impact of infrastructure quality, encompassing roads, clean water distribution, and electricity consumption, on regional economic growth in Central Java from 2018 to 2024. A Bayesian Panel Data Regression model with a hierarchical structure was estimated using the Markov Chain Monte Carlo (MCMC) method, assisted by Python programming, to address spatial heterogeneity, lag effects, and parameter uncertainty. Model validation employed Posterior Predictive Checks (PPC), Bayesian R², R-hat statistics, and Effective Sample Size (ESS). The findings reveal that past GRDP significantly influences current regional economic growth, while the direct effects of infrastructure variables are statistically insignificant. This outcome highlights that infrastructure quality is more important than quantity in promoting development. The study advances empirical methodologies by integrating full posterior inference with predictive validation, representing a state-of-the-art approach in regional economic analysis. The results provide strong evidence in support of formulating infrastructure policies that focus on long-term, sustainable Growth.

References

Agenor, P. R. (2010). A Theory of Infrastructure-Led Development. Journal of Economic Dynamics and Control, 34(5), 932–950. https://doi.org/10.1016/j.jedc.2010.01.009
Ahn, K., & Hambusch, G. (2024). Reversal Evidence From Investor Sentiment in International Stock Markets. International Review of Finance, 24(3), 415–448. https://doi.org/10.1111/irfi.12448
Albert, J., Balázs, C., Fowlie, A., Handley, W., Hunt-Smith, N., Ruiz de Austri, R., & White, M. (2025). A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications. Computer Physics Communications, 315(June). https://doi.org/10.1016/j.cpc.2025.109756
Amirkhiz, R. G., John, R., & Swanson, D. L. (2023). A Bayesian approach for multiscale modeling of the influence of seasonal and annual habitat variation on relative abundance of ring-necked pheasant roosters. Ecological Informatics, 75(October 2022), 102003. https://doi.org/10.1016/j.ecoinf.2023.102003
Armelloni, E. N., Scarcella, G., & Punt, A. E. (2025). Integrating published experimental data and hierarchical bayesian modeling: a model for common cuttlefish (Sepia officinalis Linnaeus, 1758) growth to improve predictions for aquaculture and wild stocks. Ecological Informatics, 90(March). https://doi.org/10.1016/j.ecoinf.2025.103345
Asgharian, M., Lysy, M., & Nia, V. (2017). A convergence diagnostic for Bayesian clustering. Wiley Interdisciplinary Reviews: Computational Statistics, 13. https://doi.org/10.1002/wics.1536
Baltagi, B. H., Egger, P. H., & Kesina, M. (2022). Bayesian estimation of multivariate panel probits with higher-order network interdependence and an application to firms’ global market participation in Guangdong. Journal of Applied Econometrics, 37(7). https://doi.org/10.1002/jae.2934
Banerjee, A., Duflo, E., & Qian, N. (2020). On the Road: Access to Transportation Infrastructure and Economic Growth in China. Journal of Development Economics, 145, 102442. https://doi.org/10.1016/j.jdeveco.2020.102442
Batrancea, L., Batrancea, I., Nichita, R. A., & Diaconu, A. (2023). Water infrastructure development and economic growth in Europe. Journal of Cleaner Production, 388, 136889. https://doi.org/10.1016/j.jclepro.2023.136889
Batrancea, L., Batrancea, I., Rus, M. I., & Nichita, A. (2023). Clean water supply and regional economic growth in Europe. Environmental Economics and Policy Studies, 25, 567–584. https://doi.org/10.1007/s10018-023-00368-2
Bergmann, T., & Kalkuhl, M. (2025). Decoupling economic growth from energy use: The role of energy intensity in an endogenous growth model. Ecological Economics, 230(January), 108519. https://doi.org/10.1016/j.ecolecon.2025.108519
Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Calderón, C., & Servén, L. (2010a). Infrastructure and economic development: A review of global evidence. World Bank Policy Research Working Paper.
Calderón, C., & Servén, L. (2010b). Infrastructure and economic development. World Bank.
Calderón, C., & Servén, L. (2010c). Infrastructure and Economic Development in Sub-Saharan Africa. Journal of African Economies, 19(suppl_1), i13–i87. https://doi.org/10.1093/jae/ejp022
Chabibi, W. N., & Sishadiyati, S. (2024). Effect of Infrastructure Development on the Rate of GRDP in Daerah Istimewa Yogyakarta Province in 2012–2022. Journal of Business Management and Economic Development. https://doi.org/10.59653/jbmed.v2i02.617
Chib, S., & Carlin, B. P. (1999). On MCMC sampling in hierarchical longitudinal models. Statistics and Computing, 9, 17–26. https://doi.org/10.1023/A:1008853808677
Correa, A. R., Cotte Poveda, A., & Pardo Martínez, C. I. (2025). Economic growth and human capital: An approach from dynamic stochastic general equilibrium and vector error correction modelling for Colombia. Quality & Quantity. https://doi.org/10.1007/s11135-025-02350-0
De Sisto, M., Ul-Durar, S., & Nazarian, A. (2024). Natural resource extraction - Sustainable development relationship and energy productivity moderation in resource-rich countries: A panel Bayesian regression analysis. Journal of Cleaner Production.
Du, H., Ke, Z., Jiang, G., & Huang, S. (2022). The performances of Gelman-Rubin and Geweke’s convergence diagnostics of Monte Carlo Markov chains in Bayesian analysis. Journal of Behavioral Data Science, 2(2). https://doi.org/10.35566/jbds/v2n2/p3
Ekeocha, P. C., Obasi, N. N., & Egbulonu, K. G. (2022). Electricity access and economic growth in Sub-Saharan Africa. Energy Reports, 8, 1242–1251. https://doi.org/10.1016/j.egyr.2022.01.067
Enimola, S. S. (2011). Infrastructure and economic growth: The Nigeria experience, 1980–2006. Journal of Infrastructure Development, 2(2), 111–126. https://doi.org/10.1177/097493061100200203
Esposito, L., & Tedeschi, M. (2025). The role of GHG emissions on capital accumulation in emerging countries. A dynamic analysis on BICS economies. International Review of Financial Analysis, 105(June). https://doi.org/10.1016/j.irfa.2025.104416
Foster, V., & Briceño-Garmendia, C. (2010). Africa’s infrastructure: A time for transformation. World Bank.
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402. https://doi.org/10.1111/rssa.12378
Gao, P., Zhang, S., & Zhang, F. (2025). Dynamics and its related factors of global investment connectivity in the Yangtze River Delta city-region. International Regional Science Review. https://doi.org/10.1177/01600176251323582
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2019). Bayesian Data Analysis (3rd (ed.)). CRC Press.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2021). Bayesian Data Analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9780429258411
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., Vehtari, A., Simpson, D., Margossian, C., Carpenter, B., Yao, Y., & Kennedy, L. (2021). Bayesian Workflow. Journal of the American Statistical Association, 116(536), 1838–1853. https://doi.org/10.1080/01621459.2021.1874964
Ghufron, M. I., & Bustomi, A. A. (2022). Infrastructure Development and Socio-Economic Disparities in Indonesian Society. International Journal of Economy Development Research. https://doi.org/10.33650/ijed.v1i2.5719
Growiec, J. (2022). R&D capital: An engine of growth. Economics Letters, 217, 110703. https://doi.org/10.1016/j.econlet.2022.110703
Guo, P., Fang, J., & Zhu, K. (2023). The Spatial Spillover Effect and Function Routes of Transport Infrastructure Investment on Economic Growth. Mathematics. https://doi.org/10.3390/math11051167
Haga, K. Y. A. (2021). The Asian Infrastructure Investment Bank: A qualified success for Beijing’s economic statecraft. Journal of Current Chinese Affairs, 50(2), 141–166. https://doi.org/10.1177/18681026211046967
Hendajany, N., & Wati, R. (2020). Prediksi indikator makro ekonomi Indonesia dengan model vector autoregressive periode 2019-2023. Jurnal Ekonomi Dan Bisnis, 23(2), 189–202. https://doi.org/10.24914/jeb.v23i1.2878
Hepp, P., Nadiruzzaman, M., & Krumeich, A. (2024). Contested quantification for planetary health – A sociotechnical analysis of Bangladesh’s water salinity monitoring infrastructure. Social Science and Medicine, 360(October 2023), 117312. https://doi.org/10.1016/j.socscimed.2024.117312
Iziga, O. M., & Takagi, T. (2023). Infrastructure quality and economic growth: Evidence from developing countries. Journal of Infrastructure Development, 15(1), 23–45. https://doi.org/10.1177/09749306221145678
Jiang, W., & Wang, Y. (2023). Asymmetric Effects of Human Health Capital on Economic Growth in China: An Empirical Investigation Based on the NARDL Model. Sustainability, 15(6), 5537. https://doi.org/10.3390/su15065537
Ke, X., Dang, Y., & Yang, W. (2020). Transport infrastructure, labor mobility and economic growth. Transport Policy. https://doi.org/10.1016/j.tranpol.2020.02.004
Khurriah, H., & Istifadah, N. (2019). The Role of Infrastructure in Indonesia’s Economic Growth. International Journal of Advances in Scientific Research and Engineering. https://doi.org/10.31695/IJASRE.2019.33447
Kruschke, J. K. (2018). Rejecting or Accepting Parameter Values in Bayesian Estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270–280. https://doi.org/10.1177/2515245918771304
Kuschnig, N. (2022). Bayesian spatial econometrics: a software architecture. Journal of Spatial Econometrics, 3, 6. https://doi.org/10.1007/s43071-022-00023-w
Lanfear, R., Hua, X., & Warren, D. (2016). Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses. Genome Biology and Evolution, 8(8), 2319–2332. https://doi.org/10.1093/gbe/evw171
Lestari, R. I., Wardono, B., Handajani, M., Supari, S., Juniati, H., Sunarno, M. T. D., & Prayogi, E. (2025). The interplay of road infrastructure and regional finance in driving economic growth: Insights from East Kalimantan. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100444. https://doi.org/10.1016/j.joitmc.2024.100444
Liu, H., & Liao, Z. (2023). Study on the influence mechanism of learning-application matching of graduates from private institutions: Based on human capital and family capital perspectives. Heliyon, 9(11), e22077. https://doi.org/10.1016/j.heliyon.2023.e22077
Liu, N., & Su, Y. (2025). Research on the application of improved MCMC algorithm in the measurement of high-dimensional financial data. Systems and Soft Computing, 7(June). https://doi.org/10.1016/j.sasc.2025.200311
Ma, J., Shang, Y., & Zhang, H. (2021). Application of Bayesian vector autoregressive model in regional economic forecast. Complexity, 2021. https://doi.org/10.1155/2021/9985072
Moghbel, F., Fazel, F., & Enciso, J. (2025). Combination of remote sensing with crop modeling using Bayesian inferences to predict irrigated cotton yield. Agricultural Water Management, 317, 109675. https://doi.org/10.1016/j.agwat.2025.109675
Moral-Benito, E. (2013). Likelihood-based estimation of dynamic models with two-way fixed effects. Econometrics Journal, 16(1), 400–422. https://doi.org/10.1111/j.1368-423X.2012.00372.x
Munir, F., Khurshid, N., & Khurshid, J. (2024). Unveiling the relation between household energy conservation and subjective well-being: Insights from structural equation modeling. Heliyon, 10(19), e38149. https://doi.org/10.1016/j.heliyon.2024.e38149
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Negara, S. (2016). Indonesia’s Infrastructure Development under the Jokowi Administration. In Southeast Asian Affairs (pp. 145–165). https://doi.org/10.1355/9789814695671-013
Nguyen, L., Suttie, N., Nilsson, A., & Muscheler, R. (2022). A novel Bayesian approach for disentangling solar and geomagnetic field influences on the radionuclide production rates. Earth, Planets and Space, 74, 130. https://doi.org/10.1186/s40623-022-01688-1
Nugraha, A. T., Prayitno, G., Situmorang, M. E., & Nasution, A. (2020). The role of infrastructure in economic growth and income inequality in Indonesia. Economics & Sociology, 13(1), 102–115. https://doi.org/10.14254/2071-789X.2020/13-1/7
Reski, M. B. A., & Wirjodirjo, B. S. (2021). Impact of Infrastructure Development on Economic Growth (Case Study of Lumajang Regency). International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/sa02.20210651
Romer, P. M. (1986). Increasing Returns and Long-Run Growth. The Journal of Political Economy, 94(5), 1002–1037. https://doi.org/10.1086/261420
Ross, A. G., & Fleming, N. (2023). The impact of Chinese foreign direct investment on host country economic growth. Local Economy, 38(2), 120–135. https://doi.org/10.1177/02690942231162850
Saidi, H. (2025). The endogenous linkages among electricity consumption , Government spending and economic growth in the GCC countries : New insights from GMM panel VAR framework. Energy Nexus, 19(May), 100478. https://doi.org/10.1016/j.nexus.2025.100478
Straub, S. (2011). Infrastructure and Development: A Critical Appraisal of the Macro-Level Literature. Journal of Development Studies, 47(5), 683–708. https://doi.org/10.1080/00220388.2010.509785
Sun, B., & Kauzen, R. (2023). The impact of port infrastructure and economic growth in Tanzania: Adopting a structural equation modeling approach. SAGE Open, 13(1). https://doi.org/10.1177/21582440221145894
Sun, Y., Zhang, X., & Yu, J. (2020). Bayesian dynamic modeling for macroeconomic time series: A review. Econometrics and Statistics, 15, 1–20. https://doi.org/10.1016/j.ecosta.2020.04.003
Suparman, S., & Muzakir, M. (2023). Regional inequality, human capital, unemployment, and economic growth in Indonesia: Panel regression approach. Cogent Economics & Finance. https://doi.org/10.1080/23322039.2023.2251803
Tadesse, T., & Thiam, D. R. (2021). Bayesian inference for spatial dynamic panel data models: An application to economic convergence in Africa. Spatial Economic Analysis, 16(2), 197–223. https://doi.org/10.1080/17421772.2020.1749384
Tanjung, H., Syahputra, E., & Rasyid, R. (2025). The nexus among human capital, monetary policy, and regional economic growth: Comparison of the West and East Region Indonesia. International Journal of Sustainable Development and Planning, 20(4), 419–428. https://doi.org/10.18280/ijsdp.200419
Teixeira, A. A. C., & Queir??s, A. S. S. (2016). Economic growth, human capital and structural change: A dynamic panel data analysis. Research Policy, 45(8), 1636–1648. https://doi.org/10.1016/j.respol.2016.04.006
Thach, N. N. (2025). Which, renewable or non-renewable energy, is more vital for the economic growth of OECD countries? A Bayesian hierarchical analysis. Heliyon.
Valero, D., Pummer, E., Heller, V., Kramer, M., Bung, D. B., Mulligan, S., & Erpicum, S. (2025). The unspoken value of water infrastructure. Renewable and Sustainable Energy Reviews, 212(October 2023). https://doi.org/10.1016/j.rser.2025.115378
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, 16(2), 667–718. https://doi.org/10.1214/20-BA1221
Wang, J., Yang, X., Qalati, S. A., & Deng, Y. (2022). Spatial Spillover Effect and Spatial Distribution Characteristics of Transportation Infrastructure on Economic Growth: A Case of the Yangtze River Delta. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2022.900209
Xu, F., Zhou, L., Zhou, Y., Ai, X., & Liu, Q. (2025). Power outage data management platform based on big data analysis technology. Procedia Computer Science, 261, 976–982. https://doi.org/10.1016/j.procs.2025.04.489
Yang, Y., Wang, Z., & Luo, R. (2025). Financial innovation and agricultural Investment: Drivers of sustainable growth in China’s rural economy with regional variations. International Review of Economics and Finance, 101(June), 104230. https://doi.org/10.1016/j.iref.2025.104230
Yankey, O., Utazi, C. E., & Tatem, A. J. (2024). Disaggregating census data for population mapping using a Bayesian Additive Regression Tree model. Applied Geography.
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions. Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Zhang, J., Zhao, Y., & Zhou, Q. (2022). Bayesian panel vector autoregression models: Theory and applications. Journal of Econometrics, 229(2), 233–258. https://doi.org/10.1016/j.jeconom.2021.08.005
Zhang, L., Jiang, C., Cai, X., & Wu, J. (2022). Dynamic linkages between China’s OFDI, transport, and green economic growth: Empirical evidence from the B&R countries. Energy & Environment, 33(8), 1601–1623. https://doi.org/10.1177/0958305X221115094
Zitzmann, S., Weirich, S., & Hecht, M. (2021). Using the effective sample size as the stopping criterion in Markov Chain Monte Carlo with the Bayes module in Mplus. Psych, 3(3), 336–347. https://doi.org/10.3390/psych3030025
Published
2025-12-08
How to Cite
SURIPTO, Suripto et al. Unveiling Regional Growth Patterns Spatial Heterogeneity and Infrastructure Quality under a Bayesian Framework in Central Java. Eko-Regional: Jurnal Pembangunan Ekonomi Wilayah, [S.l.], v. 20, n. 2, p. 214-234, dec. 2025. ISSN 2620-8849. Available at: <https://jos.unsoed.ac.id/index.php/er/article/view/17670>. Date accessed: 14 dec. 2025. doi: https://doi.org/10.32424/er.v20i2.17670.