Utilization of Pleurotus ostreatus And Lentinus squarrosulus In The Manufacture of Mycelium-Based Biocomposite Using Sugarcane Bagasse And Cornstalk Media
Abstract
Biocomposite is a type of composite consisting of a polymer matrix material and natural fiber reinforcement. Biocomposite technology, especially natural fibers, is currently in demand. The reasons are environmentally friendly, availability of many raw materials, low production costs, biodegradable, and recyclable. Natural fibers used in the form of agricultural waste such as sugarcane bagasse and corn stalks while the mycelium of the fungus Pleurotus ostreatus and Lentinus squarrosulus are used as natural adhesives. The objectives of this research were to determine the effect of the type of white-rot fungus and the composition of the lignocellulosic material of agricultural waste that affects the quality of the resulting biocomposite board and to obtain the optimal type of white-rot fungus and the optimal composition of lignocellulosic material from agricultural waste to manufacture mycelium-based biocomposite board. The research method used a completely randomized design with ten treatments with three replications. The treatments used 2 types of mushroom (P. ostreatus and L. squarrosulus) with 2 types of Lignocellulosic materials (Sugarcane bagasse and Cornstalk) and each lignocellulosic material has 4 types of compositions (100%, 75%, 50%, and 25%). The main parameter was analyzed using Analysis of Variance (ANOVA) with an error rate of 5%, then further tested with post hoc Duncan at 95% confidence level to compare the effect between treatments. The results showed that the treatment of the type of fungus and the lignocellulosic material used affects the quality of the resulting biocomposite board. L. squarrosulus in 100% sugarcane bagasse media is the optimal type of white-rot fungus and the optimal composition of lignocellulosic material to manufacture mycelium-based biocomposite board.
References
Allison, R.V., 1923. The Modulus of Rupture of a Soil as an Index of Its Physical Structure 1. Agronomy Journal, 15(10), pp. 409-415.
Astaria, L., Syamania, F.A. & Prasetiyoa, K.W., 2019. Sifat Fisik, Mekanik Dan Akustik Papan Partikel Berbahan Dasar Batang Jagung (Zea mays L.). Jurnal Riset Industri Hasil Hutan, 11(1), pp. 41-52.
Balaji, A., Karthikeyan, B. & Raj, C.S., 2014. Bagasse Fiber-The Future Biocomposite Material: A Review. International Journal of CemTech Research, 7(1), pp. 223-233.
Chang, S.T. & Hayes, W.A., 1978. The Biology and Cultivation of Edible Mushroom. New York: Academic Press.
Chen, M., Zhang, X., Zhang, A., Liu, C. & Sun, R., 2016. Direct Preparation of Green And Renewable Aerogel Materials From Crude Bagasse. Cellulose, 23(2), pp. 1325-1334.
Danarti, N.S., 2006. Kopi dan Budidaya Penanganan Pasca Panen. Jakarta: Penebar Swadaya.
Davallo, M, H., Pasdar, M. & Mohseni., 2010. Mechanical Properties of Unsaturated Polyester Resin. International Journal of Chem Tech Research Coden, 2(4), pp. 2113-2117.
Eggertsen, P.A. & Mattiasson, K., 2009. On The Modelling of The Bending–Unbending Behaviour For Accurate Springback Predictions. International Journal of Mechanical Sciences, 51(7), pp.547-563.
Elsacker, E., Vandelook, S., Brancart, J., Peeters, E. & De Laet, L., 2019. Mechanical, Physical and Chemical Characterisation of Mycelium-based Composites With Different Types of Lignocellulosic Substrates. PLoS One, 14(7), pp. 1-20.
Fatriasari, W., Hermiati, E., Haroen, W.K., Ningrum, R.S., Setiadji, B. & Trisunaryanti, W., 2016. Lignocellulosic Biomass For Bioproduct: Its Potency And Technology Development. Journal of Lignocellulose Technology, 1(1), pp. 1-14.
Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J. & Gursoy, B., 2019. Mycelium Based Bio-composites For Architecture: Assessing The Effects of Cultivation Factors On Compressive Strength. Portugal: University of Porto.
Haygreen, J.G. & Bowyer, J.L., 1989. Forestry Products and Wood Science. An Introduction. Lowa: Lowa State University Press.
Japanese Standard Association, 2003. Japanese Industrial Standard Particle Board. JIS A 5908. Jepang: Japanese Standard Association.
Maloney, T.M., 1993. Modern Particle Board and Dry Process Fiberboard Manufacturing. San Fransisco: Miller Freeman Inc.
Muhdi, I., Risnasari & Putri, L.A.P., 2013. Studi Pembuatan Papan Partikel Dari Limbah Pemanenan Kayu Akasia (Acacia mangium L.). Bionatura, 15(1), pp. 14-19.
Pramono, C., Widodo, S. & Ardiyanto, M.G., 2019. Karakteristik Kekuatan Tarik Komposit Berpenguat Serat Ampas Tebu Dengan Matriks Epoxy. Journal of Mechanical Engineering, 3(1), pp.1-7.
Putra, I. P., 2020. Studi Taksonomi Dan Potensi Beberapa Jamur Liar Di Pulau Belitong. Jurnal Sains Dan Teknologi, 3(1), pp. 24-31.
Ruhendi, S. & Putra, E., 2011. Sifat Fisis dan Mekanis Papan Partikel dari Batang dan Cabang Kayu Jabon (Anthocephalus cadamba Miq). Jurnal Ilmu dan Teknologi Hasil Hutan, 4(1), pp. 14-21.
Rusmiyatno, F., 2007. Pengaruh Fraksi Volume Serat Terhadap Kekuatan Tarik Dan Kekuatan Bending Komposit Nylon/Epoxy Resin Serat Pendek Random. Doctoral dissertation. Semarang: Universitas Negeri Semarang.
Saleh, A., Pakpahan, M.M.D. & Angelina, N., 2009. Pengaruh Konsentrasi Pelarut, Temperatur dan Waktu Pemasakan pada Pembuatan Pulp dari Sabut Kelapa Muda. Jurnal Teknik Kimia, 3(16), pp. 35-44.
Sari, P. H. M., Nazip, K. & Dayat, E., 2016. Jenis-Jenis Basidiomycota di Kawasan Air Terjun Curug Pandan Kabupaten Lahat Serta Sumbangannya Pada Pembelajaran Biologi di SMA. Jurnal Pembelajaran Biologi, 3(1), pp. 66-74.
Sudarma, I.M., Wijana, G., Puspawati, N.M., Suniti, N.W. & Bagus, I.G.N., 2013. Komparasi Laju pertumbuhan Miselium Jamur Tiram Putih (Pleoratus ostreatus)(jacq. ex Fr) Kummer) Pada Komposisi Media Bibit (F3) dan Baglog yang Berbeda. AGROTROP, 3, pp.77-84.
Sudarmadji, S., Haryono, B. & Suhardi., 2003. Prosedur Analisa untuk Bahan Makanan dan Pertanian. Yogyakarta: Liberty.
Sydor M, Cofta G, Doczekalska B, Bonenberg A. 2022. Fungi in Mycelium-Based Composites: Usage and Recommendations. Materials (Basel). 9 (18), pp. 62-83.
Tarigan, I.G.B., 2017. Sifat Fisis dan Mekanis Papan Partikel Dari Batang Jagung dan Bagase. Skripsi. Sumetera: USU.
Wahyuni, D. & Lapanporo, B.P., 2014. Analisis Sifat Fisik dan Mekanik Papan Partikel Berbahan Dasar Sekam Padi. Positron, 4(2).
Widiastuti, H. & Panji, T., 2008. Pola Aktivitas Enzim Lignolitik Pleurotus ostreatus Pada Limbah Sludge Pabrik Kertas. Menara Perkebunan, 76(1), pp.47-60.
Yilmaz, N. D., 2015. Agro-residual Fibers As Potential Reinforcement Elements For Biocomposites. Turki : Pamukkale University.
Yuanisa, A., Ulum, K. & Wardani, A.K., 2015. Pretreatment Lignoselulosa Batang Kelapa Sawit Sebagai Langkah Awal Pembuatan Bioetanol Generi Kedia: Kajian Pustaka. Jurnal Pangan dan Agroindustri, 3(4), pp. 1620-1626.
Zuniar, R. & Purnomo, A.S., 2016. Pengaruh Campuran Ampas Tebu dan Tongkol Jagung Sebagai Media Pertumbuhan Terhadap Kandungan Nutrisi Jamur Tiram Putih (Pleurotus ostreatus). Jurnal Sains dan Seni ITS, 5(2).