Potensi Senyawa Bioaktif dari Makroalga Hijau: Eksplorasi dan Implementasinya dalam Aplikasi Industri (Studi pada Ulvan)

  • Bima Syifa Aznur Program Magister Sumberdaya Akuatik, FPIK UNSOED
  • Mutiara Darlingga Prodi Biologi, Fakultas Pertanian Perikanan dan Biologi, Universitas Bangka Belitung. Kode Pos 33172

Abstract

The marine ecosystem harbors a wealth of natural resources that can be transformed into high-value products, with green algae, particularly ulvan, being the focus of research. Ulvan, a unique sulfated polysaccharide from green macroalgae, offers potential as a bioactive compound with various activities. Chemical structure analysis of ulvan reveals its potential applications in the industry. Ulvan extraction techniques are critical steps in achieving optimal yields, while separation and characterization of ulvan fractions through chromatography and spectroscopy allow for the identification of specific compounds. Experiments indicate that ulvan possesses strong antioxidant activity, supporting its role in functional food formulations and nutraceutical supplements. In the pharmaceutical industry, ulvan is used in the development of anti-tumor drugs and immunostimulants, with clinical trials showing positive effects on immune responses and inhibition of tumor cell growth. In the cosmetic field, formulations containing ulvan demonstrate anti-aging effects and skin hydration. The application of ulvan in biotechnology involves the production of biomaterials and biofuels. The conversion of ulvan into biofuel through microbial fermentation shows potential as a renewable energy source. Ulvan is also utilized in the production of biomaterials for medical applications, such as wound dressings. Exploring the potential anti-hyperglycemic properties of ulvan opens opportunities for diabetes therapy. Challenges related to ulvan production efficiency and in-depth characterization need to be addressed. A profound understanding of ulvan's potential as a sustainable natural resource is expected to stimulate innovation across various industrial sectors. This research provides a comprehensive overview of natural resources that can shape the future of sustainable and environmentally friendly products

References

Abd-Ellatef, G. F., Ahmed, O. M., Abdel-Reheim, E. S., & Abdel-Hamid, A. Z. (2017). Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast cancer (Dove Medical Press), 9, 67–83. https://doi.org/10.2147/BCTT.S125165
Alves, A., Sousa, R. A., & Reis, R. L. (2013). In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae. Phytotherapy Research, 27(8), 1143–1148. https://doi.org/10.1002/ptr.4843
Arango, D. G., & Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in immunology, 5, 491.

Berri, M., Olivier, M., Holbert, S., Dupont, J., Demais, H., Le Goff, M., & Collen, P. N. (2017). Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Research, 28, 39–47. https://doi.org/10.1016/j.algal.2017.10.008
Bhuyan, P. P., Nayak, R., Patra, S., Abdulabbas, H. S., Jena, M., & Pradhan, B. (2023). Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. In Cancers, 15 (3). https://doi.org/10.3390/cancers15030715
Bussy, F., Rémy, S., Le Goff, M. et al. (2022). The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek’s disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells. BMC Vet Res 18,155. https://doi.org/10.1186/s12917-022-03247-y
Celikler, S., Tas, S., Vatan, O., Ziyanok-Ayvalik, S., Yildiz, G., & Bilaloglu, R. (2009). Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food and Chemical Toxicology, 47(8), 1837–1840. https://doi.org/10.1016/j.fct.2009.04.039
Celikler, S., Yildiz, G., Vatan, O., & Bilaloglu, R. (2008). In vitro antigenotoxicity of Ulva rigida C. Agardh (Chlorophyceae) extract against induction of chromosome aberration, sister chromatid exchange and micronuclei by mutagenic agent MMC. Biomedical and environmental sciences : BES, 21(6), 492–498. https://doi.org/10.1016/S0895-3988(09)60008-8
Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198
Cheong, K. L., Zhang, Y., Li, Z., Li, T., Ou, Y., Shen, J., Zhong, S., & Tan, K. (2023). Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers, 15(15), 3153. https://doi.org/10.3390/polym15153153
Chi, Y., Li, H., Fan, L., Du, C., Zhang, J., Guan, H., Wang, P., & Li, R. (2021). Metal-ion-binding properties of ulvan extracted from Ulva clathrata and structural characterization of its complexes. Carbohydrate Polymers, 272, 118508. https://doi.org/10.1016/J.CARBPOL.2021.118508
Chudasama, N. A., Sequeira, R. A., Moradiya, K., & Prasad, K. (2021). Seaweed polysaccharide based products and materials: An assessment on their production from a sustainability point of view. Molecules, 26(9). https://doi.org/10.3390/molecules26092608
Coiai, S., Campanella, B., Paulert, R., Cicogna, F., Bramanti, E., Lazzeri, A., Pistelli, L., Coltelli, M. B. (2021). Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. Appl. Sci, 11, 9249. https://doi.org/10.3390/app11199249
Cunha, L., & Grenha, A. (2016). Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Marine drugs, 14(3), 42. https://doi.org/10.3390/md14030042
Dahms, H. U., & Dobretsov, S. (2017). Antifouling compounds from marine macroalgae. Marine Drugs, 15(9). https://doi.org/10.3390/md15090265
Dumas, B., Jaulneau, V., Lafitte, C., Jacquet, C., Fournier, S., Salamagne, S., Briand, X., & Esquerré-Tugayé, M. T. (2010). Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. Journal of Biomedicine and Biotechnology. https://doi.org/10.1155/2010/525291
Farhan, A. M., Hanifan, A. Z., Ismi, R., Al Fikriyani, Maulita, C. T., & Rieuwpassa, I. E. (2022). Potential extract of green algae (Ulva luctuca) as antimicrobial in mouthwash: literature review. Makassar Dental Journal, 11(3), 270–274. https://doi.org/10.35856/mdj.v11i3.640
Geetha Bai, R., & Tuvikene, R. (2021). Potensi Sifat Antivirus dari Polisakarida Alga Laut yang Penting Secara Industri dan Signifikansinya dalam Memerangi Pandemi Virus di Masa Depan. Virus , 13 (9), 1817. https://doi.org/10.3390/v13091817
Guidara, M., Yaich, H., Richel, A., Blecker, C., Boufi, S., Attia, H., & Garna, H. (2019). Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. International Journal of Biological Macromolecules, 135, 647–658. https://doi.org/10.1016/J.IJBIOMAC.2019.05.196
Habanjar, O., Bingula, R., Decombat, C., Diab-Assaf, M., Caldefie-Chezet, F., & Delort, L. (2023). Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. International Journal of Molecular Sciences, 24(4), 1–40. https://doi.org/10.3390/ijms24044002
Hans, N., Malik, A., & Naik, S. (2021). Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresource technology reports, 13, 100623. https://doi.org/10.1016/j.biteb.2020.100623
Jung, H., Kim, J., Lee, C. (2016). Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresource Technology, 221, 366-374.
Hu, W., Wang, G., Huang, D., Sui, M., & Xu, Y. (2019). Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Frontiers in immunology, 10, 1205. https://doi.org/10.3389/fimmu.2019.01205
Ibrahim, M. I. A., Amer, M. S., Ibrahim, H. A. H., & Zaghloul, E. H. (2022). Considerable Production of Ulvan from Ulva lactuca with Special Emphasis on Its Antimicrobial and Anti-fouling Properties. Applied Biochemistry and Biotechnology, 194(7), 3097–3118. https://doi.org/10.1007/s12010-022-03867
Chakraborty, I., Sen, I. K., Mondal, S., Rout, D., Bhanja, S. K., Maity, G. N., Maity, P. (2019). Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. Biocatalysis and Agricultural Biotechnology, 22.
Ivanova, V., Rouseva, R., Kolarova, M., Serkedjieva, J., Rachev, R., & Manolova, N. (1994). Isolation of a polysaccharide with antiviral effect from ulva lactuca. Preparative Biochemistry, 24(2), 83–97. https://doi.org/10.1080/10826069408010084
Jaulneau, V., Lafitte, C., Jacquet, C., Fournier, S., Salamagne, S., Briand, X., Esquerré-Tugayé, M. T., & Dumas, B. (2010). Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. Journal of biomedicine & biotechnology, 525291. https://doi.org/10.1155/2010/525291
Kalavathy, G., & Baskar, G. (2019). Synergism of clay with zinc oxide as nanocatalyst for production of biodiesel from marine Ulva lactuca. Bioresource Technology, 281(February), 234–238. https://doi.org/10.1016/j.biortech.2019.02.101
Khrunyk, Y., Lach, S., Petrenko, I., Ehrlich H. (2020). Progress in Modern Marine Biomaterials Research. Marine Drugs, 18(12), 589.
Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422. https://doi.org/10.1016/J.ALGAL.2019.101422
Kikionis, S., Ioannou, E., Toskas, G., Roussis, V. (2015). Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 132.
Lakshmi, D. S., Sankaranarayanan, S., Gajaria, T. K., Li, G., Kujawski, W., Kujawa, J., & Navia, R. (2020). A short review on the valorization of green seaweeds and ulvan: Feedstock for chemicals and biomaterials. Biomolecules, 10(7), 1–20. https://doi.org/10.3390/biom10070991
Li, C., Tang, T., Du, Y. et al. (2023)Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess. 10, 66. https://doi.org/10.1186/s40643-023-00690-z
Lomartire, S., & Gonçalves, A. M. M. (2022). An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. In Marine Drugs, 20(2). MDPI. https://doi.org/10.3390/md20020141
Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2021). An overview to the health benefits of seaweeds consumption. In Marine Drugs, 19(6).. https://doi.org/10.3390/md19060341
Maneein, S., Milledge, J. J, Nielsen, B. V., Harvey, P. J. (2018). A Review of Seaweed Pre-Treatment Methods for Enhanced Biofuel Production by Anaerobic Digestion or Fermentation. Fermentation, 4(4):100. https://doi.org/10.3390/fermentation4040100
Manikandan, N. A., & Lens, P. N. L. (2023). Sustainable biorefining and bioprocessing of green seaweed (Ulva spp.) for the production of edible (ulvan) and non-edible (polyhydroxyalkanoate) biopolymeric films. Microbial cell factories, 22(1), 140. https://doi.org/10.1186/s12934-023-02154-7
Margareta, W., Nagarajan, D., Chang, J. S., & Lee, D. J. (2020). Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Applied Energy, 262(January), 114574. https://doi.org/10.1016/j.apenergy.2020.114574
de Freitas, M. B., Stadnik, M. J., (2015). Ulvan-induced resistance in Arabidopsis thaliana against Alternaria brassicicola requires reactive oxygen species derived from NADPH oxidase. Physiological and Molecular Plant Pathology, 90, 49-56.
Mendes, G. D. S., Soares, A. R., Martins, F. O., De Albuquerque, M. C. M., Costa, S. S., Yoneshigue-Valentin, Y., Gestinari, L. M. D. S., Santos, N., & Romanos, M. T. V. (2010). Antiviral activity of the green marine alga Ulva fasciata on the replication of human metapneumovirus. Revista Do Instituto de Medicina Tropical de Sao Paulo, 52(1), 3–10. https://doi.org/10.1590/S0036-46652010000100002
Mertowska, P., Smolak, K., Mertowski, S., & Grywalska, E. (2023). Immunomodulatory Role of Interferons in Viral and Bacterial Infections. International journal of molecular sciences, 24(12), 10115. https://doi.org/10.3390/ijms241210115
Mhatre, A., Gore, S., Mhatre, A., Trivedi, N., Sharma, M., Pandit, R., Anil, A., & Lali, A. (2019). Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renewable Energy, 132, 742–751. https://doi.org/10.1016/j.renene.2018.08.012
Michalak, I., Tiwari, R., Dhawan, M., Alagawany, M., Farag, M. R., Sharun, K., Emran, T. B., & Dhama, K. (2022). Antioxidant effects of seaweeds and their active compounds on animal health and production - a review. The veterinary quarterly, 42(1), 48–67. https://doi.org/10.1080/01652176.2022.2061744
Miyuranga, K.A.V., Arachchige, U.S.P.R., Marso, T.M.M., Samarakoon, G. (2023). Biodiesel Production through the Transesterification of Waste Cooking Oil over Typical Heterogeneous Base or Acid Catalysts. Catalysts , 13, 546. https://doi.org/10.3390/catal13030546
Mo’o, F. R. C., Wilar, G., Devkota, H. P., & Wathoni, N. (2020). Ulvan, a polysaccharide from Macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. In Applied Science, 10(16). https://doi.org/10.3390/app10165488
Morais, T., Inácio. A., Coutinho. T., Ministro. M., Cotas, J., Pereira, L., Bahcevandziev, K. (2020). Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering, 8(8), 559. https://doi.org/10.3390/jmse8080559
Morelli, A., Betti, M., Puppi, D., Bartoli, C., Gazzarri, M., Federica, C. (2015). Enzymatically Crosslinked Ulvan Hydrogels as Injectable Systems for Cell Delivery. Macromolecular Chemistry and Physics, 217.
Morelli, A., Federica, C. (2010). Ulvan as a New Type of Biomaterial from Renewable Resources: Functionalization and Hydrogel Preparation. Macromolecular Chemistry and Physics, 211, 821 – 832.
Na, Y. S., Kim, W. J., Kim, S. M., Park, J. K., Lee, S. M., Kim, S. O., Synytsya, A., & Park, Y. Il. (2010). Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens. International Immunopharmacology, 10(3), 364–370. https://doi.org/10.1016/J.INTIMP.2009.12.011
Nagaraj, P. V. S., Ashok, S. J., Ravi, S. B., Temjensangba, I, Cathrine, S. M. (2023). Chapter 28 - Elucidation of the antioxidant potential of marine macroalgal biomolecules for healthcare applications: current status and future prospects. Marine Antioxidants, 365-377.
Neha, M., Ena, G., Priyanka, S., Ranu, P. (2021) Chapter 22 - Application of microalgae metabolites in food and pharmaceutical industry. Preparation of Phytopharmaceuticals for the Management of Disorders, 391-408.
Niklas, W., Sophie, S., Gunilla, T., Henrik, P., Ulrica, E. (2020). Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohydrate Polymers, 249.
Nwokolo, N., Mukumba, P., Obileke, K., Enebe M. (2020) Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes, 8(10), 1224. https://doi.org/10.3390/pr8101224
Offei, F., Mensah, M., Thygesen, A., Kemausuor, F. (2018). Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation, 4(4), 99. https://doi.org/10.3390/fermentation4040099
Ponce, M., Zuasti, E., Anguís, V., Fernandez-diaz, C. (2020). Effects of the sulfated polysaccharide ulvan from Ulva ohnoi on the modulation of the immune response in Senegalese sole (Solea senegalensis). Fish & Shellfish Immunology, 100.
Pradhan, B., Bhuyan, P. P., & Ki, J. S. (2023). Immunomodulatory, Antioxidant, Anticancer, and Pharmacokinetic Activity of Ulvan, a Seaweed-Derived Sulfated Polysaccharide: An Updated Comprehensive Review. Marine drugs, 21(5), 300. https://doi.org/10.3390/md21050300
Qi, H., & Sun, Y. (2015). Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. International journal of biological macromolecules, 76.
Ramu Ganesan, A., Shanmugam, M., & Bhat, R. (2018a). Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. International Journal of Biological Macromolecules, 112, 1164–1170. https://doi.org/10.1016/j.ijbiomac.2018.02.089
Ramu Ganesan, A., Shanmugam, M., & Bhat, R. (2018b). Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. International Journal of Biological Macromolecules, 112, 1164–1170. https://doi.org/10.1016/J.IJBIOMAC.2018.02.089
Razizadeh, M.H., Zafarani, A., Taghavi-Farahabadi, M. et al. (2023). Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we?. Cell Commun Signal, 21, 26. https://doi.org/10.1186/s12964-023-01266-2
Rodrigues-Souza, I., Pessatti, J., Silva, L., de Lima, B. D., Souza, I., Cestari, M & Silva de Assis, H., Rocha, H., Simas, F., Trindade, E., Leme, D. (2022). Protective potential of sulfated polysaccharides from tropical seaweeds against alkylating- and oxidizing-induced genotoxicity. International Journal of Biological Macromolecules, 211.
Shan, J. Z., Xuan, Y. Y., Zheng, S., Dong, Q., & Zhang, S. Z. (2009). Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. Journal of Zhejiang University. Science. B, 10(9), 668–674. https://doi.org/10.1631/jzus.B0920149
Sharma, S., Mohler, J., Mahajan, S.D., Schwartz, S.A., Bruggemann, L., Aalinkeel, R. (2023). Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms, 11, 1614. https://doi.org/10.3390/microorganisms11061614
Sharmila, G. S., Kumar, M. D., Pugazhendi, A., Bajhaiya, A. K., Gugulothu, P., & J, R. B. (2021). Biofuel production from Macroalgae: present scenario and future scope. Bioengineered, 12(2), 9216–9238. https://doi.org/10.1080/21655979.2021.1996019
Stirk W A, Reinecke D L, Staden J V. (2006). Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J Appl Phycol (2007) 19:271–276. DOI 10.1007/s10811-006-9134-7
Tako, M., Tamanaha, M., Tamashiro, Y., & Uechi, S. (2015). Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa. Advances in Bioscience and Biotechnology, 06(10), 645–655. https://doi.org/10.4236/abb.2015.610068
Thiyagarasaiyar, K., Goh, B. H., Jeon, Y. J., & Yow, Y. Y. (2020). Algae metabolites in cosmeceutical: An overview of current applications and challenges. In Marine Drugs, 18(6).
Toskas, G., Heinemann, S., Heinemann, C., Cherif, C., Hund, R., Roussis, V., Hanke, T. (2012). Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohydrate Polymers, 89(997–1002)
Tziveleka, L. A., Ioannou, E., & Roussis, V. (2019). Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydrate Polymers, 218, 355–370. https://doi.org/10.1016/J.CARBPOL.2019.04.074
Vairappan, C. S., Kamada, T., Lee, W. W., & Jeon, Y. J. (2013). Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. Journal of Applied Phycology, 25(6), 1805–1813. https://doi.org/10.1007/s10811-013-0023-6
Vítězová, M., Kohoutová, A., Vítěz, T., Hanišáková, N., Kushkevych, I. (2020). Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment. Processes, 8(12), 1546. https://doi.org/10.3390/pr8121546
Vo, T. S., Ngo, D. H., & Kim, S. K. (2012). Potential targets for anti-inflammatory and anti-allergic activities of marine algae: An overview. Inflammation and Allergy - Drug Targets, 11(2), 90–101. https://doi.org/10.2174/187152812800392797
Wang, H., Cao, Z., Yao, L., Feng, T., Song, S., & Sun, M. (2023). Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. Foods, 12(8). https://doi.org/10.3390/foods12081622

Wang, R., Paul, V. J., & Luesch, H. (2013). Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway. Free Radical Biology and Medicine, 57, 141–153. https://doi.org/10.1016/j.freeradbiomed.2012.12.019
Wang, W., Wang, S. X., & Guan, H. S. (2012). The antiviral activities and mechanisms of marine polysaccharides: an overview. Marine drugs, 10(12), 2795–2816. https://doi.org/10.3390/md10122795
Wei, Q., Fu, G., Wang, K., Yang, Q., Zhao, J., Wang, Y., Ji, K., & Song, S. (2022). Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals (Basel, Switzerland), 15(5), 581. https://doi.org/10.3390/ph15050581
Widyartini, D. S., Hidayah, H. A., & Insan, A. I. (2023). Diversity and distribution pattern of bioactive compound potential seaweed in Menganti Beach, Central Java, Indonesia. Biodiversitas, 24(2), 1125–1135. https://doi.org/10.13057/biodiv/d240252
Xu, J., Liao, W., Liu, Y., Guo, Y., Jiang, S., & Zhao, C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Production, Processing and Nutrition, 5(1), 18. https://doi.org/10.1186/s43014-023-00132-5
Xu, S. Y., Huang, X., & Cheong, K. L. (2017). Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Marine Drugs, 15(12), 1–16. https://doi.org/10.3390/md15120388
Yang, Q., Jiang, Y., Fu, S., Shen, Z., Zong, W., Xia, Z., Zhan, Z., & Jiang, X. (2021). Protective Effects of Ulva lactuca Polysaccharide Extract on Oxidative Stress and Kidney Injury Induced by D-Galactose in Mice. Marine drugs, 19(10), 539. https://doi.org/10.3390/md19100539
Zhao, C., Lin, G., Wu, D., et al. (2020) The algal polysaccharide ulvan suppresses growth of hepatoma cells. Food Frontiers, 1, 83–101. https://doi.org/10.1002/fft2.13
Published
2023-09-27
How to Cite
AZNUR, Bima Syifa; DARLINGGA, Mutiara. Potensi Senyawa Bioaktif dari Makroalga Hijau: Eksplorasi dan Implementasinya dalam Aplikasi Industri (Studi pada Ulvan). MAIYAH, [S.l.], v. 2, n. 3, p. 161-180, sep. 2023. ISSN 2963-4091. Available at: <https://jos.unsoed.ac.id/index.php/maiyah/article/view/9648>. Date accessed: 17 may 2025. doi: https://doi.org/10.20884/1.maiyah.2023.2.3.9648.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.