PENERAPAN TEKNOLOGI NANO PADA SEKTOR LINGKUNGAN, ENERGI, DAN PERTANIAN: TINJAUAN KRITIS
Abstract
Teknologi nano menawarkan potensi besar dalam meningkatkan efisiensi dan keberlanjutan di sektor lingkungan, energi, dan pertanian. Pendekatan sintesis partikel nano berbasis tumbuhan (phytosynthesis) muncul sebagai metode ramah lingkungan yang menggantikan bahan kimia beracun dengan metabolit alami, menghasilkan partikel nano yang stabil, seragam, dan ekonomis. Aplikasi teknologi nano dalam fitoremediasi memanfaatkan kemampuan tanaman hiperakumulator untuk menyerap polutan dan mengubahnya menjadi material bernilai tinggi, sementara dalam bioenergi, partikel nano berperan sebagai katalis yang meningkatkan konversi lignoselulosa menjadi bioetanol serta produksi biogas. Di bidang pertanian, pupuk-nano dan pestisida-nano berbasis logam oksida seperti ZnO dan CuO meningkatkan efisiensi nutrisi dan perlindungan tanaman dari patogen, didukung oleh karbon nanotube (CNTs) yang memperbaiki struktur tanah dan penyerapan air. Namun demikian, tantangan seperti toksisitas partikel nano terhadap lingkungan, bioakumulasi dalam rantai makanan, dan gangguan pada mikroba tanah memerlukan perhatian serius. Selain itu, pendekatan berbasis data seperti kecerdasan buatan (Artificial Intelligence / AI) dan pembelajaran mesin (Machine Learning / ML) menyediakan solusi untuk mengoptimalkan desain partikel nano, meningkatkan stabilitas, dan meminimalkan dampak toksik. Integrasi teknologi nano dengan pendekatan ini diyakini mampu mempercepat inovasi di berbagai sektor sekaligus mendukung keberlanjutan ekosistem secara global.
References
Anand, U., Carpena, M., Kowalska-Góralska, M., Garcia-Perez, P., Sunita, K., Bontempi, E., Dey, A., Prieto, M.A., Proćków, J., & Simal-Gandara, J. 2022. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment, 821, p.153472.
Asmathunisha, N. & Kathiresan, K. 2013. Rapid biosynthesis of antimicrobial silver and
gold nanoparticles by in vitro callus and leaf extracts from Lycopersicon esculentum Mill. Int. J. Pharm. Bio Sci. 4, 334–344.]
Brar, K.K., Magdouli, S., Othmani, A., Ghanei, J., Narisetty, V., Sindhu, R., Binod, P., Pugazhendhi, A., Awasthi, M.K., & Pandey, A. 2022. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research, 207, p.112202.
Chen, Q. & Grossmann, I.E. 2017. Recent developments and challenges in optimization-based process synthesis. Annual review of chemical and biomolecular engineering, 8(1), pp.249-283.
Daisy, P. & Saipriya, K. 2012. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International journal of nanomedicine, pp.1189-1202.
Dash, S.S., Majumdar, R., Sikder, A.K., Bag, B.G., & Patra, B.K. 2014. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Applied Nanoscience, 4, pp.485-490.
Fernandes, J.P., Mucha, A.P., Francisco, T., Gomes, C.R., & Almeida, C.M.R. 2017. Silver nanoparticles uptake by salt marsh plants–Implications for phytoremediation processes and effects in microbial community dynamics. Marine pollution bulletin, 119(1), pp.176-183.
Gao, X.J., Ciura, K., Ma, Y., Mikolajczyk, A., Jagiello, K., Wan, Y., Gao, Y., Zheng, J., Zhong, S., Puzyn, T., & Gao, X. 2024. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. Advanced Materials, 36(45), p.2407793.
Gopinath, K., Gowri, S., Karthika, V., & Arumugam, A. 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure in Chemistry, 4, pp.1-11.
Hanks, N.A., Caruso, J.A., & Zhang, P. 2015. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag (I) contaminated waters. Journal of Environmental Management, 164, pp.41-45.
Harish, V., Ansari, M.M., Tewari, D., Yadav, A.B., Sharma, N., Bawarig, S., García-Betancourt, M.L., Karatutlu, A., Bechelany, M., & Barhoum, A. 2023. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. Journal of the Taiwan Institute of Chemical Engineers, 149, p.105010.
Hofmann, T., Lowry, G.V., Ghoshal, S., Tufenkji, N., Brambilla, D., Dutcher, J.R., Gilbertson, L.M., Giraldo, J.P., Kinsella, J.M., Landry, M.P., & Lovell, W. 2020. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1(7), pp.416-425.
Infante-Neta, A.A., D’Almeida, A.P., & Albuquerque, T.L.D. 2024. Bacterial Cellulose in Food Packaging: A Bibliometric Analysis and Review of Sustainable Innovations and Prospects. Processes, 12(9), p.1975.
Jayaseelan, C., Rahuman, A.A., Rajakumar, G., Vishnu Kirthi, A., Santhoshkumar, T., Marimuthu, S., Bagavan, A., Kamaraj, C., Zahir, A.A., & Elango, G. 2011. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitology research, 109, pp.185-194.
Jiang, Y., Salley, D., Sharma, A., Keenan, G., Mullin, M., & Cronin, L. 2022. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances, 8(40), p.eabo2626.
Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F.N., O’Halloran, J., & Jansen, M.A. 2011. Alumina nanoparticles enhance growth of Lemna minor. Aquatic toxicology, 105(3-4), pp.328-336.
Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah, A.A., Ullah, N., Ullah, M.F., Bibi, H., Bafakeeh, O.T., Khedher, N.B., & Eldin, S.M. 2022. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), p.1386.
Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., & Mohan, N.J.C.S.B.B. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), pp.50-56.
Kumar, A., Choudhary, P., Kumar, A., Camargo, P.H., & Krishnan, V. 2022. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small, 18(1), p.2101638.
Makarov, V.V., Makarova, S.S., Love, A.J., Sinitsyna, O.V., Dudnik, A.O., Yaminsky, I.V., Taliansky, M.E., & Kalinina, N.O. 2014. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30(20), pp.5982-5988.
Mandal, R.R., Bashir, Z., Mandal, J.R., & Raj, D. 2024. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. Environmental Monitoring and Assessment, 196(6), p.502.
Matešić, M., Varlec, D., & Renić, N. 2023. The Role of Green Technologies in the Transformation Process Towards Climate Neutrality: the Perspective of COP28. 14. konferencije o održivom razvoju, p.32.
Moulahoum, H. & Ghorbanizamani, F. 2024. Navigating the development of silver nanoparticles based food analysis through the power of artificial intelligence. Food Chemistry, p.138800.
Niculescu, A.G., Chircov, C., & Grumezescu, A.M. 2022. Magnetite nanoparticles: Synthesis methods–A comparative review. Methods, 199, pp.16-27.
Noman, E.A., Al-Gheethi, A., Al-Sahari, M., Mohamed, R.M.S.R., Crane, R., Ab Aziz, N.A., & Govarthanan, M. 2022. Challenges and opportunities in the application of bioinspired engineered nanomaterials for the recovery of metal ions from mining industry wastewater. Chemosphere, 308, p.136165.
Okoampah, E., Mao, Y., Yang, S., Sun, S., & Zhou, C. 2020. Gold nanoparticles–biomembrane interactions: From fundamental to simulation. Colloids and Surfaces B: Biointerfaces, 196, p.111312.
Olkhovych, O., Svietlova, N., Konotop, Y., Karaushu, O., & Hrechishkina, S. 2016. Removal of metal nanoparticles colloidal solutions by water plants. Nanoscale Research Letters, 11, pp.1-7.
Paragas, D.S. 2024. Nanoinsecticide Perspectives for Plant Protection and Nutrition: An Emerging Field. In Nano-Insecticide: Today and Future Perspectives (pp. 51-75). Cham: Springer Nature Switzerland.
Punniyakotti, P., Vinayagam, S., Rajamohan, R., Priya, S.D., Moovendhan, M., & Sundaram, T. 2024. Environmental Fate and Ecotoxicological Behaviour of Pesticides and Insecticides in Non-Target Environments: Nanotechnology-Based Mitigation Strategies. Journal of Environmental Chemical Engineering, p.113349.
Rai, P.K., Kumar, V., Lee, S., Raza, N., Kim, K.H., Ok, Y.S., & Tsang, D.C. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment international, 119, pp.1-19.
Remya, R.R., Rajasree, S.R., Aranganathan, L., & Suman, T.Y. 2015. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, pp.110-115.
Ropiudin, R. & Syska, K., 2023. Analisis Kualitas Biobriket Karbonisasi Limbah Bambu Dengan Perekat Tepung Singkong dan Tepung Nasi Aking. Jurnal Agritechno, pp.1-12.
Santhoshkumar, T., Rahuman, A.A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C., Zahir, A.A., Elango, G, & Kamaraj, C. 2011. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology research, 108, pp.693-702.
Shafey, A.M.E. 2020. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), pp.304-339.
Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea-Torresde, J.L., & Pal, T. 2007. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental science & technology, 41(14), pp.5137-5142.
Sharma, P., Bano, A., Singh, S.P., Atkinson, J.D., Lam, S.S., Iqbal, H.M., & Tong, Y.W. 2022. Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. Fuel, 329, p.125408.
Singh, R.P., Handa, R., & Manchanda, G. 2021. Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of controlled release, 329, pp.1234-1248.
Syska, K. & Ropiudin, R. 2023. Study of" Green Manufacturing" on Rural Crystal Coconut Sugar SMEs. Journal of Tropical Agricultural Engineering and Biosystems-Jurnal Keteknikan Pertanian Tropis dan Biosistem, 11(1), pp.13-27.
Syska, K. 2022. Peningkatan Daya Saing Melalui Penerapan Pengering Hemat Energi pada UMKM Gula Kelapa Kristal Sari Manggar, Banyumas Jawa Tengah. Aptekmas Jurnal Pengabdian pada Masyarakat, 5(4), pp.164-172.
Van Koetsem, F., Xiao, Y., Luo, Z., & Du Laing, G. 2016. Impact of water composition on association of Ag and CeO 2 nanoparticles with aquatic macrophyte Elodea canadensis. Environmental Science and Pollution Research, 23, pp.5277-5287.
Xu, Q.S., Hu, J.Z., Xie, K.B., Yang, H.Y., Du, K.H., & Shi, G.X. 2010. Accumulation and acute toxicity of silver in Potamogeton crispus L. Journal of hazardous materials, 173(1-3), pp.186-193.
Yadav, K.K., Gupta, N., Kumar, A., Reece, L.M., Singh, N., Rezania, S., & Khan, S.A. 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological engineering, 120, pp.274-298.
Yadav, N., Garg, V.K., Chhillar, A.K., & Rana, J.S. 2023. Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review. Plant Nano Biology, 4, p.100032.
Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R.M., Liu, Y., Ng, W.J., & Tan, S.K. 2014. Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecological engineering, 70, pp.114-123.
Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R.M., Liu, Y., Stuckey, D., Ng, W.J., & Tan, S.K. 2015. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 120, pp.211-219.
Zhang, Z., Malik, M.Z., Khan, A., Ali, N., Malik, S., & Bilal, M. 2022. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Science of The Total Environment, 807, p.150856.