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Abstract - A simple analysis using differential calculus has been done to consider the minimum limit of the 
Heisenberg uncertainty principle in the relativistic domain. An analysis is made by expressing the form of 
∆�, ∆�, ∆�,	 and ∆� based on the Lorentz transformation, and their corresponding relation according to the de 
Broglie wave packet modification. The result shows that in the relativistic domain, the minimum limit of the 
Heisenberg uncertainty is ∆p∆x≥ ��ћ/2 and/or ∆E∆t≥ ��ћ/2, with  � is the Lorentz factor which depend on the 
average/group velocity of relativistic de Broglie wave packet. While, the minimum limit according to ∆p∆x≥ћ/2 
or ∆E∆t≥ћ/2, is the special case, which is consistent with Galilean transformation. The existence of the 
correction factor signifies the difference in the minimum limit of the Heisenberg uncertainty between relativistic 
and non-relativistic quantum. It is also shown in this work that the Heisenberg uncertainty principle is not 
invariant under the Lorentz transformation. The form ∆p∆x≥ ��ћ/2 and/or ∆E∆t≥ ��ћ/2 are properly obeyed by 
the Klein-Gordon and the Dirac solution.     
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INTRODUCTION 

The Heisenberg uncertainty principle, which is 
mathematically expressed as 2/ xp  

and/or 2/ tE , is a fundamental principle 
in the quantum domain. This Principle restricts 
simultaneous measurements of p-x and E-t pair  
to be not less than ћ/2 [1-4], which is the 
smallest limit of the Heisenberg uncertainty. 
The interesting point according to the authors’ 
viewpoint, is that the forms 2/ xp  

and/or 2/ tE  do not consider whether 
the observations are done in the non-relativistic 
or in the relativistic domain, inspite of the fact 
that each domain obeys different transformation 
rule. In the non-relativistic domain, quantities p, 
x, E, and t have to be consistent with Galilean 
transformation and in the relativistic domain, 
these quantities have to be consistent with the 
Lorentz transformation[2]. It is not evident if 
the form 2/ xp  and/or 2/ tE  are 

actually consistent with both Galilean and 
Lorentz transformation or with either one of 
these transformations.  

There were speculations that when the 
Heisenberg uncertainty relation was built, there 
had been the Einstein-deBroglie relation,which 
had taken into account the relativistic effect [5-

8]. But the relativistic effect did not seem to 
appear explicitly in the Heisenberg uncertainty 
relation, as far as we know. In Relativistic 
Quantum Theory, we can find uncertainty 

relations ccm 0  and/or 20cm [9,10]. 

But it does not give explanations about time 
dilation and length contraction, while these 
phenomena do happen, for example in the case 
of muon particle when it is moving along the 
earth atmosphere [2]. 

In this paper, we propose a hypothesis that 
if quantities p , x , E , and t  are subject to a 

different transformation rule, it should result in 
a different form of their corresponding 
uncertainties. This is the question we seek to 
answer, i.e. whether or not distinct form of the 
Heisenberg uncertainty exist for each non-
relativistic and relativistic domain. To address 
that point, in this paper we will subject p , x ,

E , and t  to the Lorentz transformation. The 
condition for p , x , E  and t  can be 

manifested in the picture of de Broglie wave 
packet explicitly [3]. Based on that viewpoint, 
whether or not the form of Heisenberg 

2/ xp  and/or 2/ tE  changes will 

be investigated. Thus, it will be revealed if the 
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minimum value of Heisenberg uncertainty in the 
relativistic domain is still 2/ or changes to 
some other values.  

A generalized uncertainty relation, which 
gives the correction factor to Heisenberg 
uncertainty and is used as reference in String 
Theory, has been proposed to be 

  ...12/
2
 pxp  [11-14]. 

However, it is intriguing for the authors to 
review the uncertainty based on the idea that the 
Lorentz transformation is the generalization of 
Galilean transformation [2]. Hence, the 
Heisenberg uncertainty relation observed based 
on the Lorentz Transformation will be more 
general and may be able to show something 
hidden when it is subjected to Galilean 
transformation. This approach may be able to 
give an evident difference between relativistic 
and non-relativistic quantum domain.  

 

Equivalence of the relatvistic energy equation 

from the particle picture to the wave picture 

In this section, we will begin by making 
particle-wave picture equivalence from equation 

2 2 2 2 2
0 .E p c m c   Equations for particle picture 

and the wave picture are written respectively as
                                                

 

               
2 2 4 2 2 2 2 2 2

0 0 0m c m v c m c  
        (1) 

and 

                        
2 2 2 2 2 2 2

0 ,k c           (2) 

where    is the frequency related to total 
energy, k

 
is the wave number of relativistic 

momentum, and 0 is the intrinsic frequency, 

which is related to the rest energy [1,5-8]. All 
quantities in Eq.(2), that have the dimension of 
energy and momentum will be expressed, 
respectively in frequency and wave number. 
Some of these variables are dummy variables, 
which does not have a particular physical 
meaning. This technique is done merely to make 
de Broglie wave analysis at the latter stage 
easier, because all analysis of uncertainty will 
be expressed in de Broglie wave picture. 

We begin with the term 22ck on in Eq. (2). 

This term will be replaced by a dummy 2 . At 

this point,
 

  has no relationship with total 
energy or rest energy, but only a quantity whose 

dimension is energy when multiplied by ћ. 
Hence, Eq. (2) becomes 

                     
2
0

22222    
             (3) 

Alternatively, Eq. (2) can be written in the 
following form 

                
22

0
2222222 ckckck  

          (4) 

Eq. (3) and (4) combined implies the following 
relation 

               ckkk  
00 ///            (5) 

which is analogous to the relation for photons, 
i.e.

 
ck / . Eq. (5) allows us to compare 

frequencywave number relation to that of 
massless particles as the standard form. For 
massless particles, all the forms in Eq.(5) are 
reduced to simply one relation, i.e. ck / .  

In Eq. (4), the terms 22 k and 
2
0

2k
 
appear 

have the dimension of momentum, though both 
of them do not relate to the de Broglie 

wavelength. The term 
2
0

2k  is related 

corresponds to the Compton wavelength [2,9-

10] and 22 k  is just a quantity whose value 

equal to 222 / c . 

After we apply the technique above, the 
next step is to make the Lorentz factor appear 
explicitly for frequency of the first and the 
second term of Eq.(3) as follows 

                   0    and v 
  .           (6) 

Here,
 v  denotes a frequency that 

corresponds to the particle momentum. The 
reason for this definition is to put the wave 
picture and its particle counterpart in an 
analogous form such that direct comparison can 
be drawn between both picture. Hence, Eq.(3) 
can be written as 

                
2
0

22222
0

22    v  .           (7) 

By using the same procedure as Eq.(6), Eq.(4) 
becomes 

 

           
22

0
2222222

0
22 ckckck v    .       

(8) 
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Here, vk
 
relates with denotes a wavelength that 

corresponds to v . Comparing Eq.(8) and 

Eq.(7) the following relations are inferred, 

             ck00     and   ckvv /  .          (9) 

 

From the analyses above, we obtain quantities 

,,,, 0
vv kk  and k . They, which are dummy 

variables. In the next step, these variables will 
be used to simplify the wave analysis. 

  After making the equivalences above, 
we can express relativistic energy and 
momentum, respectively, in frequency and wave 
number. Based on Eq.(7) and (8), the Lorentz 
factor in the wave picture is expressed as 

  
2
0

2

1/1



 v   and  

2
0

2

1/1
k

kv  .  (10)  

 

Hence, relativistic energy and momentum in de 
Broglie wave picture can be expressed as  

                      
2
0

2

0 1/



 vE         (11) 

and 

 

                 
2
0

2

1/
k

k
kkp v

v     .           (12) 

 

Relativistic Energy and Momentum 

Uncertainty in The Wave Picture ( ∆� and 

∆k ) 

The uncertainty of relativistic energy E in 
de Broglie wave picture is obtained by 

differentiating Eq. (11) with respect to v , 

which yields 

                 
v

vE 



 

0

3   .       (13) 

 

It is equivalent to its particle picture, i.e. 

vvmE  0
3 . The uncertainty of relativistic 

momentum ∆p in de Broglie wave picture is 

obtained by differentiating Eq. (12) with respect 

to vk , which yields 

                     vkkp  3   .            (14) 

 

It is equivalent to its particle picture, i.e

vmp  0
3 .  

Eq. (14) and (16) can be expressed, 

respectively, in the form
 vKE  3  and 

 

vpp  3 ,  where vK and vp are 

uncertainties that have the same form as the 
uncertainty of non-relativistic kinetic energy 

and momentum, respectively. Both vK and

vp  can be derived from the formula of non-

relativistic kinetic energy and momentum, i.e. 

0

2

0

22

2

1

2 

vv
v

m

k
K 


  and

 vv kvmp  0 . 

The value of vK and vp  must be in the 

relativistic domain as the consequence of the 
value of E  and p  on the left hand side. So, 

we can suppose in the theoretical sense that 

vK
 

and vp  as if the uncertainty form of 

non-relativistic energy and momentum for the 

value cv  . But in reality, vK  and vp must 

be in domain that v≪ c , correspond to 
Schrodinger equation. 

A comparison of momentum and energy 
uncertainty with and without the Lorentz factor 

3  tells that for the same v or vk , the change 

in relativistic momentum p will be larger than 

that of non-relativistic momentum vp . This 

effect also happens to the total energy E  

against vK . Relativistic energy and momentum 

uncertainty will increase by a factor of 
3 as the 

consequence of the increase in rest mass in 
particle picture. 

In order to show the relation between E  
and p ,  Eq.(13) can be stated into









 c

k

k
kE v

v

0

3 , and by virtue of Eq. (14), 

we get the following relation  
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                     







 c

k

k
pE v

0

 .                    (15) 

By cancelling ћ , it becomes the derivation of 
dispersion relation, i.e. 

 

             vv
v k

dk

d









 3

0

3 






  .           (16) 

 

The quantity inside the bracket which relates 
E  in Eq.(13) and p  in Eq. (14) is the speed 

of de Broglie wave packet, i.e. dkdvg /

[1,4,5]. The speed can also be expressed in other 

forms, i.e. 







kk
c

k

k
c

k

k
v vv

g











00

.  

For simply, if cv  , so 0kkv  and if v≪ c so 

vk ≪ 0k  . Equation .(15) can be formed to be the 

relation between uncertainty of non-relativistic 
kinetic energy and uncertainty of non-
relativistic momentum by cancelling the Lorentz 
factor, i.e. 

 

                        







 c

k

k
pK v

vv

0

, (17) 

 

then by cancelling ћ, it becomes the derivation 
of dispersion relation, i.e. 

 

                         vv
v k

dk

d

















0

  (18) 

 

 The existence of �� as a multiplication factor of 
∆�� and ∆�� in Eq.(16) exhibits the range of 
∆E and ∆p increase in the wave picture. 
Consequently the wave packet is built according 
to Eq. (16) is different than that of Eq. (18). The 
term inside the bracket on Eq.(16) and (18) is 
the speed of wave packet (particle), nevertheless 
the speed value from both equations above, i.e., 
��

��
� are still close to c.  The difference between 

Eq.(16) and (18) is just within the range of 
frequency and wave number’s uncertainty as 
large as ��∆�� and ��∆��. So, the form of 

wave packet without the Lorentz factor i.e Eq. 
(18) is more appropriate to describe non-
relativistic condition, although here the value of 
� is still close to c. The form of wave packet 
without the Lorentz factor will has been truly 
consistent describes non-relativistic particle if 
the value of � has been made to be smaller-
smaller than the speed of light as it should be 
the purpose of ∆�� dan ∆�� themselves.  

So far, comparison between relativistic 
and non-relativistic wave packet is understood 
without considers comparison of the space 
uncertainty ∆�, i.e The comparison is still made 
based on the same ∆�.  On the next section, we 
will show that the Lorentz factor can affect the 
space uncertainty ∆�. 

 

Position and Time Uncertainty under 

Lorentz Transformation  

There is a point which we must explain to the 
readers about the uncertainty terminology of � 
and �.  In quantum field theory, � and � are 
viewed as a parameter, hence both of them are 
not properties of particle. The ∆� and ∆�  
respectivelly show how long and how far the 
state changes correspond to the arbitrary 
observable Q [1,3]. These process are described 
as follow:  

 

            ∆� =
�

〈
��

��
〉
∆�   and   ∆� =

��

〈
��

��
〉
∆�  (19) 

 

Then ∆� means the space as large as we can 
observe the wave packet along this and ∆� as the 
duration when the wave packet as large as ∆� is 
moving. But in the context of Heisenberg 
uncertainty, we can view both ∆� and ∆� as if 
an uncertainty such that can be connected with 
∆� and ∆� in the sense of uncertainty principle. 

If we notice, the relativistic position is x = ���x’ 
[2].We write that form because position is 
viewed as a parameter.  Nevertheless in the 
description of de Broglie wave packet, we can 
view average values for both � and � as 〈�〉 and 
〈�〉 [1,3].  The average value of speed and 
position can be related as we have seen 
according to Ehrenfest theorem [9].  Hence, in 
this context we can write as 〈�〉 = ���〈�′〉 
(transformation of the central position of wave 
packet), so properly it will connect with 〈�〉	= 
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���〈�〉, with � contains an average value of 
particle’s speed i.e. the group speed of the wave 

packet [1,3], that is � =1/�1−
〈�〉�

��
.  

Equivalently, �=1/�1 −
〈��〉

�

��
� , hence 〈�〉 = 

ћ�〈��〉.  This average value also prevails for 
energy-time pair.   

The uncertainty of position so that it is 
consistent with Lorentz transformation must be 

                                 
'1 xx     (20) 

Here, ∆x’ is interpreted as the proper width of 
wave packet in S’ reference frame which 
transforms as ∆x when it is observed from S 
reference frame.  Consequently, wave packet’s 
width in relativistic case will contract according 
to Lorentz-Fitzgerald contraction because of 
factor ���, while for non-relativistic wave 
packet, it will not happen. Then, time 
uncertainty is written as: 

                            '1 tt   .                     (21) 

So, based on Eq.(20) and (21) we can 
understand that ∆x = ��∆�. Here, ∆t shows the 

time which is needed by the contracted wave 
packet ∆x when it is moving through a point in 
S reference frame according to observer who 
stays in this frame. This reason comes from the 

relation   �′ = ��� − ����. If we derive �′ only 

with respect to �, we get the relation ∆�′ =
	|−�∆�|�� = ∆�′	��. Then from ∆� ′ = �∆�, we 

get the relation  ∆� = ∆�	�� as the contracted 

width of wave packet during the time ∆�.  

If the uncertainty of time is viewed from 
understanding that the time in S’ frame runs 
slower according to the observer in S frame, so 
we use inverse Lorentz transformation of time, 
i.e., 

                                  'tt   .  (22) 

Uncertainty of time for relativistic wave packet 
will dilates as large as �, the ∆�′ is interpreted as 
if the proper time. We state like that because the 
definiton of proper time is ∆�′ = ∆�′/�, not 
∆�′ = ∆�′/��.   

 

Heisenberg uncertainty under Lorentz 

transformation 

According to the Heisenberg uncertainty 
relation’s format, Eq. (14) and (20) are 

combined to be '1
0

3 xvmxp  
. 

In the 

wave picture, momentum-position uncertainty is  

                    '13 xkxk v                    

                      
'13 xpxp v   .   

                      2/2 xp ,  (23) 

 

Based on ∆� = ∆�/〈�〉 and ∆� = 〈�〉∆�, we get 
 

'1
0

3 tvvmtE   . Then, energy-time 

uncertainty in the wave picture is  

                

'1

0

3 tt v
v  




             

                    
'13 tKtE v   .                     

                2/2 tE ,                           (24) 

But on the other hand, formulation of energy-
time uncertainty can also be obtained by taking 
∆� from Eq.(22), with the consequence that it’s 
energy couple must be taken in the form of 
Lagrangian according to the rule ∫��� = 

−�1 −
��

��
���

��/�1 −
��

��
[15]. In the wave 

picture, the Lagrangian is

 
2
0

2

0 1



 vL   . 

Then we must take the differential form of � so 
that it is consistent with the rule of Heisenberg 

uncertainty relation, i.e.
v

vL 



 

0

 . So, 

the uncertainty relation is 

               '
0

ttL v
v  




  ,               

                 
'tKtL v    .               

                2/2 tL                              (25) 

This form is not equivalent with uncertainty 
relation of momentum-position (not like ∆E∆�).  
We do not use this later. 
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Notice that terms on the left hand side of Eq. 
(23) and (24) show uncertainty relation which 
are relativisticly consistent. While terms on the 
right hand side show uncertainty relation which 
are non-relativistic consistent (without Lorentz 
factor) i.e. ∆��∆�′, ∆��∆�′.  So, they are 
compatible with the Galilean transformation 
with the minimum limit is ћ/2.  It is reasonable 
because if we take � ≪ �, value � ≈ 1, hence 
Eq.(23) to be ∆p∆x ≈ ��	∆�∆�’ = ћ/2 (so for 
Eq.(24) and (25)).  It shows that the form of 
Heisenberg uncertainty for � ≪ � approximates 
the form of Heisenberg uncertainty when the 
relativistic effect is not yet entered to the 
quantum domain, as if that the form is derrived 
directly from equations 〈�〉=m〈�〉 and 〈x〉=〈x′〉 
in non-relativistic limit [1,3].  

Based on this analysis, we can see that 
magnification of the Heisenberg uncertainty is 
as the natural consequence of the Lorentz 
transformation, and not because of intervention 
in the measurement process. The phase space 
will be larger if the speed of particle close to the 
speed of light. It means that the minimum limit 
of Heisenberg uncertainty in describing particle 
will be different between relativistic and non-
relativistic domain.  While on reference [4], the 
Lorentz factor does not appear in uncertainty 
relation, although it is in the relativistic domain.  
For massless particle, Eq.(23) and (24) revert to 
ordinary Heisenberg uncertainty like on 
reference [16].  

In some literatures, there have been 
confirmed that the Heisenberg uncertainty for 
relativistic particle is ∆�∆� = �����= ћ [9,10].  
It means that our ability to localize a particle is 
impossible more accurate than it’s Compton 
wavelength, because the change of particle 
momentum is impossible larger than ���.  If 
we notice Eq.(23) in the particle picture, 
certainly there is a part ��∆�∆�’ whose value 

equal to ћ/2, with �〈��〉 − 〈�〉� = �〈∆��〉 and 

�〈�′�〉 − 〈�′〉� = �〈∆�′�〉  If ∆� ≪ �, so ∆�’ 
reaches the value as large as it can. In this 
situation, two possibility can occur, i.e. �� ≈ � 

or �� ≪ � . For �� ≈ �, the Lorentz factor is 

significant, so the uncertainty relation is 
Eq.(23). Then for �� ≪ �, the Lorentz factor is 

not significant, so the uncertainty is	∆�∆� = 
��∆�∆�’. On the other side, if ∆� ≈ �, so 
∆�’ ≈ ��. In this situation, �� = 0. Hence, 

Eq.(23) becomes ∆�∆� = �����= ћ/2, or we 

can write ћ/2 just as ћ. Further, because of 
�� = 0 in the energy-time uncertainty, i.e. 

∆�∆� = ����∆�∆� = ћ/2, it gives consequence 

that  ∆� = 0 and ∆� = ∞. It seems contradictive 
with ∆�∆� = ���

��= ћ [9,10]. Nevertheless, we 
can see that energy relation � = � +���

�, 
imply that � = ���

� when �� = 0. Hence we 

can replace  ∆� = ���
�, and obviously ∆� = �. 

It means that although uncertainty of energy 
which is related with velocity is zero, but the 
rest energy of particle does still exist. The � can 
be interpreted as intrinsic periode that remind us 
to intrinsic frequency	�� in Eq.(2). We give the 
terminology for the left hand side of Eq.(23) and 
Eq.(24) as the coordinate Heisenberg 
uncertainty while the hand side whose value are 
always 	ћ/2 are the proper Heisenberg 
uncertainty. It is like the concept of proper 
length/time and coordinate length/time.  

In the quantum field theory, we do not find 
commutational relation in the context of (p-x) 
and (E-t) but we use the relation 
[Φ(x,t),	�(x’,t)]=iћ�(x-x’) (for example:Klein-
Gordon equation) [17,18].  Nevertheless, it does 
not mean that uncertainty relation in the context 
of (p-x) and (E-t) cannot be used again.  Both 
relations can still be used by the following 
convention: 

Table 1 Commutational relation and non-relativistic 
uncertainty. 

Relation Momentum –
Position 

Energy- 

Time 

Commutation [p,x]=iћ - 

Heisenberg 
Uncertainty 

∆p∆x≥ћ/2 ∆E∆t≥ћ/2 

 

Table 2 Commutational relation and relativistic 
uncertainty. 

Relation Momentum-
Position 

Energy-Time 

Commutation - - 

Heisenberg 
Uncertainty 

∆p∆x≥ ��ћ/2 ∆E∆t≥ ��ћ/2 

 

In non-relativistic quantum theory, x 
and p are operators.  So, both of them can be 
formed to be [p,x]=iћ, but for E dan t cannot be 
formed like that because t is a parameter.  
Although there is no commutational relation for 
E and t, both of them can still be formed in the 
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uncertainty relation like p and x [2,3].  In the 
relativistic domain, quantity x and t are a 
parameter. Both of them are not properties of 
the particle [17,18], so neither (E-t) nor (p-x) 
has the commutational relation.  Nevertheless, 
uncertainty relation for both couples does exist.  
They must be written as ∆p∆x	≥ ��ћ/2 and 
∆E∆t	≥ ��ћ/2.  It is as the consequence of 
keeping the consistence of Lorentz 
transformation. It means that the Klein-Gordon 
and Dirac solution should follow this condition.  

 

CONCLUSION 

De Broglie wave analysis of Heisenberg 
uncertainty relation under Lorentz 
transformation yields ∆p∆x≥ ��ћ/2 and 
∆E∆t≥ ��ћ/2 for the mass particle.  The 
minimum limit of Heisenberg uncertainty 
principle is ��ћ/2 if the group velocity of the 
wave packet closes to the speed of light. It 
confirms that Heisenberg uncertainty principle 
does not invarian based on the Lorentz 
transformation.  
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