

JURNAL SIMPUL INOVASI

Journal of Innovation - Hub

Pusat Inkubator Bisnis – Universitas Jenderal Soedirman ISSN: 0000-0000 E-ISSN: 0000-0000 Volume (2), Issue (1), Halaman 23-29, Juni 2025

Pengaruh Variasi Panjang Serat Pelepah Pisang Dengan Matriks Resin *Polyster* Terhadap Sifat Mekanik Komposit

Tegar Jati Nugroho^{1*}, Sri Hastuti² dan Xander Salahudin^{1,2}

1Program Studi S1 Teknik Mesin, Universitas Tidar, Kota Magelang, Jawa Tengah, Indonesia E-mail: tegarjati200@gmail.com

Abstrak

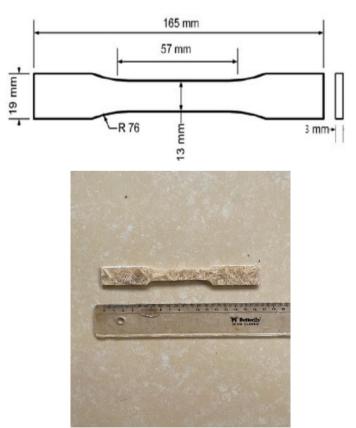
Perkembangan material komposit telah mengalami kemajuan pesat dan mendapatkan perhatian luas di berbagai sektor industri, termasuk industri otomotif, karena keunggulannya dalam hal kekuatan spesifik yang tinggi dan ringan. Penelitian ini bertujuan untuk mengetahui pengaruh variasi panjang serat pelepah pisang terhadap sifat mekanik komposit, khususnya kekuatan tarik, ketangguhan impak, dan karakteristik struktur makro. Serat pelepah pisang yang digunakan memiliki variasi panjang 5 mm, 10 mm, 15 mm, dan 20 mm, dengan perlakuan alkali menggunakan larutan 5% NaOH selama 2 jam. Matriks yang digunakan adalah resin *polyester* BQTN 157–EX dengan *katalis Methyl Ethyl Ketone Peroxide* (MEPOXE). Pengujian tarik mengacu pada standar ASTM D638, sedangkan uji impak mengacu pada standar ASTM D5942. Hasil penelitian menunjukkan bahwa nilai ketangguhan impak tertinggi diperoleh pada panjang serat 20 mm sebesar 0,033 J/mm², sedangkan nilai terendah terdapat pada panjang serat 5 mm sebesar 0,019 J/mm². Nilai tegangan tarik maksimum juga diperoleh pada variasi panjang serat 20 mm sebesar 9,08 MPa. Pengamatan struktur makro pada seluruh spesimen menunjukkan terjadinya *fiber pull out*, yang mengindikasikan lemahnya ikatan antara matriks dan serat kurang sempurna. Penelitian ini menunjukkan bahwa panjang serat berpengaruh signifikan terhadap performa mekanik komposit serat pelepah pisang.

Kata kunci: Komposit, polyster, serat pelepah pisang.

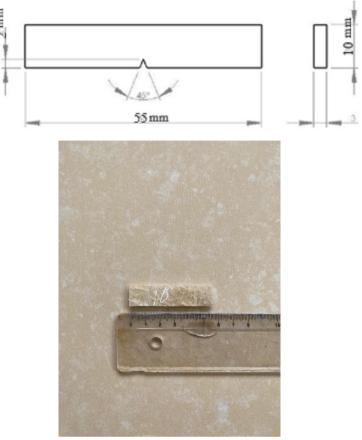
1. Pendahuluan

Perkembangan material komposit telah mengalami kemajuan pesat dan mendapatkan perhatian luas dari berbagai sektor industri. Material komposit, yang terdiri dari dua atau lebih bahan dengan sifat fisik dan kimia yang berbeda, menggabungkan keunggulan masing-masing bahan penyusunnya untuk menciptakan material baru dengan karakteristik yang lebih unggul. Salah satu aplikasi potensial dari material komposit pada industri otomotif, penggunaan material komposit dalam industri otomotif bertujuan untuk menghasilkan komponen yang lebih ringan, kuat, dan tahan terhadap korosi dibandingkan dengan material konvensional (Silviana et al., 2023).

Seiring dengan perkembangan teknologi dan meningkatnya kesadaran akan pentingnya keberlanjutan lingkungan, industri material terus mencari alternatif yang lebih ramah lingkungan dan efisien untuk menggantikan bahan konvensional seperti logam. Salah satu alternatif yang semakin mendapatkan perhatian material komposit berbasis serat alami. Material komposit ini tidak hanya menawarkan keunggulan mekanik, tetapi juga berkontribusi dalam pengurangan dampak lingkungan akibat limbah industri (Jaya et al., 2019).


Komposit berpenguat serat alam semakin intensif dikembangkan sehubungan dengan penggunaannya dalam berbagai bidang kehidupan serta tuntutan pemakaian material yang murah, mudah diperoleh, ringan, memiliki sifat mekanik yang kuat, tahan korosi dan ramah lingkungan, sehingga dapat menjadi bahan alternatif selain logam dan *fiber glass* yang tidak ramah lingkungan. Serat pelepah pisang berpotensi sebagai penguat dalam material komposit,

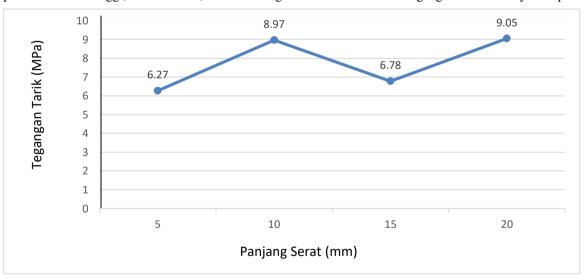
termasuk komposit dengan matriks polimer. Kombinasi ini dapat menghasilkan material yang ringan, kuat, dan tahan terhadap tekanan. Pohon pisang dianggap sebagai sumber daya alam yang dapat diperbarui dan dapat tumbuh dengan cepat (Diana et al., 2022).


Berdasarkan latar belakang, maka pada penelitian ini dilakukan untuk mengetahui kekuatan mekanik dari bahan komposit berpenguat serat serat pelepah pisang dan resin *polyester* dengan variasi panjang serat 5 mm, 10mm, 15 mm, dan 20 mm menggunakan metode *hand lay up* dengan perlakuan NaOH sebesar 5% selama 2 jam. Bentuk pengaplikasian dari material ini direncanakan pada bodi motor.

2. Metodologi

Metode penelitian ini dilakukan eksperimen langsung. Komposisi komposit menggunakan 30% serat pelepah pisang sebagai penguat. Serat pelepah pisang dipotong dengan variasi panjang serat 5 mm, 10 mm, 15 mm, dan 20 mm. Serat pelepah pisang direndam 5% larutan NaOH selama 2 jam. Setelah itu serat pelepah pisang yang sudah dipotong dikeringkan dibawah sinar matahari. Resin yang digunakan pada penelitian ini merupakan unsaturated *polyester* BQTN 157 sebagai pengikat. Metode pencetakan komposit dengan metode *hand lay up*. Variasi pada penelitian ini yaitu panjang serat 5 mm, 10 mm, 15 mm, dan 20 mm. Setelah proses pencetakan komposit dengan variasi yang telah ditentukan selesai, langkah selanjutnya adalah memotong komposit sejumlah 3 spesimen pada setiap variasi panjang serat sesuai dengan bentuk spesimen uji yang telah ditetapkan, serta memastikan bahwa dimensi spesimen tersebut sesuai dengan standar yang ditentukan. Dalam penelitian ini, uji yang digunakan adalah uji tarik dan uji impak. Bentuk spesimen uji tarik mengikuti standar ASTM D638 dan uji impak menggunakan standar ASTM D5942. Berikut ini adalah gambar spesimen uji berdasarkan standar ASTM D638 dan ASTM D5942, dengan dimensi yang tercantum dalam satuan milimeter, yang dapat dilihat pada Gambar 1 dan Gambar 2.

Gambar 2.1 spesimen uji tarik ASTM D638

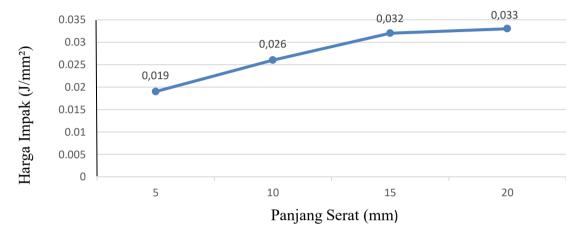


Gambar 2.2 spesimen uji impak ASTM D 5942

3. Hasil dan pembahasan

3.1. Hasil Pengujian Tarik

Pengujian tarik menggunakan *speed* 5 mm/menit, spesimen komposit variasi panjang serat 20 mm memperoleh nilai pembebanan tertinggi, sebesar 433,51 MPa Pengolahan nilai rata-rata tegangan tarik ditunjukan pada Gambar 1

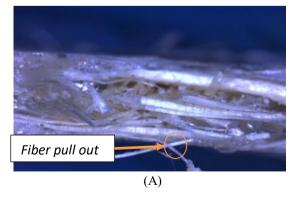

Gambar 1. Nilai Tegangan Tarik

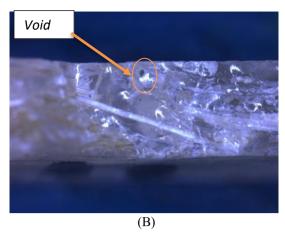
Hasil nilai tegangan tarik variasi panjang serat 20 mm memiliki rata-rata tegangan tarik tertinggi sebesar 9,05 MPa. Sedangkan nilai rata-rata tegangan tarik terendah terdapat pada komposit variasi panjang serat 5 mm, sebesar 6,27 MPa. Variasi Panjang serat 15 mm mengalami penurunan nilai tegangan rataratanya 6,78 MPa. Hal ini disebabkan

pendistribusian serat yang tidak merata menyebabkan kekuatan komposit serat lebih rendah, semakin panjang serat di dalam matriks maka permukaan serat yang menanggung beban yang diberikan oleh matriks menjadi besar, dan begitu juga sebaliknya (Mahmuda et al., 2013).

3.2. Hasil Ketangguhan Impak

Pengujian Impak *Charpy* menggunakan sudut α 144°. Spesimen uji impak terdapat 4 variasi, setiap variasi terdiri 3 spesimen yang diuji impak, kemudian hasilnya dirata-rata. Ukuran spesimen 55 mm x 10 mm x 3 mm, dan takik sedalam 2 mm. Nilai ketangguhan impak dituliskan dalam harga impak dari masing-masing variasi kemudian disajikan dalam bentuk grafik yang ditunjukkan pada Gambar 2.




Gambar 2 Hasil Ketangguhan Uji Impak Charpy

Ketangguhan impak pada Gambar 2 menunjukkan pengaruh variasi panjang serat. Berdasarkan data pada Gambar Hasil pengujian impak menuunjukan nilai ketangguhan impak tertinggi terdapat pada variasi panjang serat 20 mm dengan hasil nilai ketangguhan impak sebesar 0,033 J/mm² dan untuk nilai terendah terdapat pada variasi Panjang serat 5 mm dengan hasil nilai ketangguhan impak sebesar 0,019 J/mm². Hal ini disebabkan panjang serat dalam pembuatan komposit serat pada matrik sangat berpengaruh terhadap kekuatan serat, semakin panjang serat semakin besar pula harga impak yang didapat. Panjang serat dapat mengalirkan beban maupun tegangan dari titik tegangan kearah serat yang lain dan membuktikan bahwa semakin panjang serat semakin besar pula tingkat ketangguhan impak yang dihasilkan dan keuletan dari spesimen akan semakin bertambah (Maryanti et al., 2019).

3.3. Pengamatan Foto Makro

Hasil Pengamatan foto makro uji tarik dan ketangguhan impak ditunjukan pada Gambar 3.

Gambar 3. Hasil Pengamatan Foto Makro

Gambar 3 (A) menunjukkan gambar pengamatan foto makro patahan komposit hasil pengujian tarik. Pada daerah yang mempunyai ikatan paling lemah antara serat dan matrik dalam komposit menyebabkan serat terlepas dari matriknya mengakibatkan *fiber pull out*. Gambar 3 (B) Terlihat *void* akibat masih banyaknya udara yang terperangkap pada pembuatan material komposit (Rochim dan Ningsih, 2021).

4. Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat diambil kesimpulan sebagai brikut:

- 1. Hasil pengujian tarik menunjukan hasil rata-rata tegangan tarik dan rata-rata regangan tarik tertinggi dimana rata-rata tegangan tarik variasi panjang serat 20 mm memperoleh hasil 9.08 MPa
- 2. Pengujian impak *charpy* dapat disimpulkan hasil nilai ketangguhan impak tertinggi terdapat pada variasi panjang serat 20 mm dengan hasil nilai ketangguhan impak sebesar 0,033 J/mm² dan untuk nilai terendah terdapat pada variasi panjang serat 5 mm dengan hasil nilai ketangguhan impak sebesar 0,019 J/mm².
- 3. Hasil pengamatan foto makro pada penampang patahan hasil pengujian impak dan pengujian tarik dapat diketahui bahwa menunjukkan ketidaksempurnaan ikatan antara serat dan matriks menyebabkan terjadinya *fiber pull out* dan *void* yang berdampak negatif pada kekuatan material.

5. Saran

Berdasarkan hasil penelitian yang telah dilakukan, untuk memperoleh spesimen yang lebih optimal maka disarankan sebagai berikut:

- 1. Proses pembuatan komposit dengan susunan serat secara acak pastikan semua serat tersebar merata didalam cetakan mengurangi adanya *void* .
- 2. Penggunaan serat maupun resin bisa divariasikan lagi atau diganti agar kekuatan dari komposit bisa lebih tinggi.

Daftar Pustaka

- [1] Silviana, N. Fathoni, and L. Rohmawati, "Sifat Fisik Dan Mekanik Komposit Berpenguat Serat Alam," *J. Inov. Fis. Indones.*, vol. 12, pp. 63–69, 2023.
- [2] D. Jaya *et al.*, "Prosiding Seminar Nasional Teknik Kimia 'Kejuangan' Pemanfaatan Serat Pelepah Pisang sebagai Bahan Komposit," *Jur. Tek. Kim.*, no. April, pp. 1–7, 2019.
- [3] L. Diana, A. Ghani Safitra, and M. Nabiel Ariansyah, "Analisis Kekuatan Tarik pada Material Komposit dengan Serat Penguat Polimer," *J. Kesehat. dan Masy.*, vol. 2, no. 2, pp. 2808–6171, 2022.

- [4] M. Perdana, "Pengaruh Fraksi Volume Penguat Terhadap Kekuatan Lentur Green Composite Untuk Aplikasi Pada Bodi Kendaraa," *J. Ipteks Terap.*, vol. 9, no. 4, pp. 276–282, 2016, doi: 10.22216/jit.2015.v9i4.409.
- [5] A. E. Purkuncoro, "ANALISIS PENGARUH PENGGUNAAN NaOH 5% PADA SERAT PELEPAH PISANG DENGAN FRAKSI VOLUME 40%, 50% DAN 60% TERHADAP KEKUATAN MEKANIS," *Al-Jazari J. Ilm. Tek. Mesin*, vol. 3, no. 2, pp. 46–57, 2018, doi: 10.31602/al-jazari.v3i2.1616.
- [6] A. Admin, S. Sehono, and I. Rizki Putra, "Analisis Kekuatan Tarik Dan Bending Komposit Serat Pelepah Pisang," *Tek. STTKD J. Tek. Elektron. Engine*, vol. 8, no. 1, pp. 167–174, 2022, doi: 10.56521/teknika.v8i1.617.
- [7] E. Mahmuda, S. Savetlana, and D. Sugiyanto, "Pengaruh Panjang Serat Terhadap Kekuatan Tarik Komposit Berpenguat Serat Ijuk dengan Matrik Epoxy," *J. Ilm. Tek. Mesin*, vol. 1, no. 3, pp. 79–84, 2013.
- [8] B. Maryanti *et al.*, "Karakteristik Kekuatan Impak Komposit Serabut Kelapa Dengan Variasi Panjang Serat," *Pros. SENIATI*, vol. 5, no. 4, pp. 339–343, 2019.
- [9] S. D. P. Dynanty and A. Mahyudin, "Pengaruh Panjang Serat Pinang Terhadap Sifat Mekanik dan Uji Biodegradasi Material Komposit Matriks Epoksi dengan Penambahan Pati Talas," *J. Fis. Unand*, vol. 7, no. 3, pp. 233–239, 2018, doi: 10.25077/jfu.7.3.233-239.2018.
- [10] C. Nana Nasuha, A. Fikri, and A. Rizal, "Pengaruh Panjang Serat Jerami Terhadap Tegangan Tarik Pada Komposit Untuk Aplikasi Mobil Listrik," *J. Fak. Tek.*, vol. 1, no. 1, pp. 5–8, 2020.
- [11] R. S. Catur and M. Arif Irfa'i, "Analisis Karakteristik Fraksi Volume Serat Komposit Hybrid Pelepah Pisang Dan Eglas Woven Terhadap Kekuatan Bending Dengan Resin Polyester," *J. Tek. Mesin*, vol. 06, no. 01, pp. 69–73, 2018.
- [12] M. N. Rochim and T. H. Ningsih, "Penggunaan Serat Jerami Padi Dalam Pembuatan Material Komposit Sebagai Alternatif Bahan Bumper Mobil," *J. Tek. Mesin*, vol. 9, pp. 1–6, 2021.
- [13] M. Hisyam and F. Widyawati, "Analisis Pengaruh Massa Serat Terhadap Sifat Fisis Dan Mekanik Papan Komposit Gipsum Berpenguat Sisal (Agave Sisalana)," *Hexag. J. Tek. dan Sains*, vol. 2, no. 1, pp. 16–21, 2021, doi: 10.36761/hexagon.v2i1.872.
- [14] Lelawati, E. Tonadi, and Aan Sefentry, "Analisis Kekerasan Papan Komposit dari Serat Pelepah Pisang Dengan Resin Polyester," *J. Redoks*, vol. 8, no. 2, pp. 152–157, 2023, doi: 10.31851/redoks.v8i2.13614.
- [15] A. Zulfan, M. Dzulfikar, P. Studi, T. Mesin, and U. W. Hasyim, "Pengaruh Susunan Tata Letak Serat Pada Komposit Resin Polyester-Serat Batang Pisang Terhadap Kekuatan Tarik," *Fak. Tek. Univ. Wahid Hasyim Semarang*, pp. 25–30, 2021.
- [16] M. Juliandi, A. Irwan, and F. A. Kurniawan, "Penyelidikan Sifat Mekanis Bahan Komposit Polimer Diperkuat Serat Batang Pisang Kepok Akibat Beban Tarik," *J. Simetri Rekayasa*, vol. 2, no. 20, pp. 97–102, 2020, [Online]. Available: https://jurnal.harapan.ac.id/index.php/JSR
- [17] S. A. Rahmawaty, "Analisa Kekuatan Tarik dan Tekuk pada Komposit Fiberglas-Polyester Berpenguat Serat Gelas dengan Variasi Fraksi Volume Serat," *JTM-ITI (Jurnal Tek. Mesin ITI)*, vol. 5, no. 3, p. 146, 2021, doi:

- 10.31543/jtm.v5i3.685.
- [18] T. Ojahan, R. Hansen, and A. M.S., "Analisis Fraksi Volume Serat Pelepah Batang Pisang Bermatriks Unsaturated Resin Polyester (UPR) Terhadap Kekuatan Tarik dan SEM," *Mechanical*, vol. 6, no. 1, pp. 43–48, 2015, doi: 10.23960/mech.v6.i1.201506.
- [19] M. Y. Ali, "Analisis Kekuatan Uji Impak Komposit Serat Alam (Serat Batang Pisang)," *Anal. Kekuatan Uji Impak Komposit Serat Alam (Serat Batang Pisang)*, vol. 23, no. 1, pp. 35–38, 2022.