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ABSTRACT.  This paper studies the Newton-Raphson method to approximate a root of 

a real-valued function in one-dimensional real discrete metric space. The method 

involves a derivative and is considered to be convergent very fast. However, the 

derivative is derived from the limit definition with respect to the Euclidean distance, 

different from that of the discrete metric space. This research investigates the Newton-

Raphson method with respect to derivatives defined in discrete metric spaces by deriving 

the derivative first. The examined derivatives are absolute derivative and parameterised 

derivative on metric spaces. The results show that the constructed Newton-Raphson 

method can be an alternative root-finding method exemplified by some examples. 

Keywords: Newton-Raphson method, discrete metric space, metric space derivative. 

 

ABSTRAK.  Artikel ini membahas metode Newton-Raphson untuk mengaproksimasi 

akar dari fungsi bernilai riil pada ruang metrik diskrit riil berdimensi satu. Metode 

tersebut melibatkan turunan fungsi dan cenderung konvergen dengan cepat. Namun, 

turunan fungsi tersebut didapatkan dari definisi limit untuk jarak Euclid yang berbeda 

dengan jarak pada ruang metrik diskrit. Penelitian ini menyelidiki metode Newton-

Raphson untuk turunan fungsi pada ruang metrik diskrit diawali dengan mengonstruksi 

turunan tersebut. Turunan yang digunakan adalah turunan mutlak dan turunan 

berparameter pada ruang metrik. Hasil penelitian menunjukkan bahwa metode Newton-

Raphson yang dibentuk dapat menjadi metode alternatif untuk pencarian akar fungsi 

menurut beberapa contoh. 

Kata Kunci: metode Newton-Raphson, ruang metrik diskrit, turunan ruang metric. 
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1. INTRODUCTION 

Numerical methods have been alternative approaches to solving 

mathematical problems that are hardly solvable by analytical methods. These 

problems often occur in real-world contexts, such as engineering and statistics 

(Chouhan & Gaur, 2022). One of the problems is root approximation for functions 

that are difficult to factorise. There are several numerical methods to approximate 

the roots of such functions, one of which is the Newton-Raphson method. The 

method involves derivatives to approximate a root of a function by iterations and 

was first used by Newton in 1669 (Epperson, 2013). 

The Newton-Raphson is an open method meaning that it does not always 

converge. However, once convergent, it is very fast i.e. it converges to the root in 

fewer steps than slower root approximation methods (Epperson, 2013). Therefore, 

it can be a useful root approximation method applicable to solve such problems 

that are difficult to solve by analytical method. 

The Newton-Raphson method involves a derivative resembling a tangent’s 

gradient (Bartle & Sherbert, 2011) (the standard derivative). The tangent is used 

to approximate a root iteratively with an initial root approximation. The derivative 

is derived from the limit, whose definition involves Euclidean distance between 

two real numbers. However, there are many ways to study real numbers apart 

from viewing the numbers as a set with Euclidean distance. One of them is 

viewing such numbers as a metric space, a set together with a metric that 

generalises the concept of “distance” usually depicted by Euclidean distance. The 

new way to represent the distance can alter the limit, thus modifying the 

derivative. It then eventually disrupts the Newton-Raphson method, resulting in 

different iteration schemes. 

This research investigates the Newton-Raphson method by modifying the 

derivative with respect to a different metric space that adjusts the standard 

derivative to a modified one. The metric space is a discrete metric space, a metric 

that results in either   or   that symbolises “same” and “different” respectively. 

Even though it rarely occurs in real-life problems (Kreyszig, 1978), it gives a 

unique perspective of distance, making it binary. Binary systems are apparent in 
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computer or digital studies. Hence, studying this metric could be beneficial for 

development in such studies. 

The derivatives of real-valued functions constructed in discrete metric space 

give potential Newton-Raphson iterations that can be alternative root-finding 

methods. The iterations may break some limitations in the standard Newton-

Raphson methods and offer rapid convergence. Therefore, the methods could 

solve real-world problems that are presumably hard to calculate by the standard 

one. 

 

2. DISCUSSION AND RESULTS 

2.1 Preliminaries 

 We discover some definitions and theorems that help understand the 

results. The materials consist of the concepts of metric spaces, Banach spaces, 

limits and derivatives in the spaces, and the Newton-Raphson method. 

 

Definition 2.1 (Metric Space). Let   be a set, and         be a function. 

The set   together with  , denoted by (   ), is called a metric space if, for every 

       , it satisfies the following conditions (Kreyszig, 1978): 

i. Nonnegativity:  (   )   , 

ii.  (   )    if and only if    , 

iii. Symmetry:  (   )   (   ), 

iv. Triangle inequality:  (   )   (   )   (   ). 

The function   is called a metric. 

 

Definition 2.2 (Normed Space). Let   be a vector space over real or complex 

numbers and ‖ ‖     be a function. The set   together with ‖ ‖, denoted by 

(  ‖ ‖), is called a normed space if, for every       and    , it satisfies the 

following conditions (Kreyszig, 1978): 

i. Nonnegativity:    , 

ii. ‖ ‖    if and only if    ̂ (the zero element of  ), 

iii. ‖  ‖     ‖ ‖, 
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iv. Triangle inequality: ‖   ‖  ‖ ‖  ‖ ‖  

 

The following definition of limit is the generalised version of that of real 

number space whose metric is the Euclidean metric. 

 

Definition 2.3 (Limit in Metric Space). Let       be a function from     

for a metric space (    ) to a metric space (    ). The limit of   approaching   

of  ( ) equals  , or        ( )   , if for every positive  , there exists a 

positive   such that     (   )    implies   ( ( )  )    (Rudin, 1986). 

 

One may construct a definition of derivative in metric space using the same 

generalisation of developing Definition 2.3. However, the idea of derivative was 

originated from the concept of slopes of tangents in real-valued functions  

(Bartle & Sherbert, 2011). Consequently, this visual-based concept cannot be 

simply generalised as that of limits since not every metric space has 

straightforward visualisation as up-to-three-dimensional real number spaces. 

Despite the visualisation limitation, there are several attempts to define 

derivatives in metric spaces (and normed spaces). In this paper, we examine such 

three definitions from (Charatonik & Insall, 2012), (Ambrosio, Gigli, & Savaré, 

2005), and (Coleman, 2012) respectively. 

 

Definition 2.4 (Absolute Derivative). Let (    ) and (    ) be metric spaces 

and       be a function where    . The function   is differentiable at 

point     if 

   
   

  ( ( )  ( ))

  (   )
  

exists. The limit is called the derivative of  ( ) at   denoted by   ( ). 

 

According to the definition of standard derivative (Bartle & Sherbert, 2011), 

we can denote the distance between   and   by  . Therefore, if the Definition 2.4 

asserts 
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  ( )     
   

  ( ( )  ( ))

  (   )
  

i.e. the derivative at point   is when   approaches  , we then can modify it as   

approaching  . In other words, we have 

  ( )     
   

  ( (   )  ( ))

  (   )
   

 

Definition 2.5 (Parameterised Derivative). Let   (   )    be a function from 

an open interval (   )    to a metric space (   ). The function   is 

differentiable at   if 

   
   

 ( (   )  ( ))

   
 

exists. The derivative of  ( ) with respect to   is the limit. 

 

Parameterised derivative is not the official name of the derivative. However, we 

need to name it in order to distinguish it among the other two derivatives. The 

name is based on the fact that the derivative is based on parameterised paths on a 

metric space (Ambrosio, Gigli, & Savaré, 2005). 

 

Definition 2.6 (Gateaux Derivative). Let (  ‖ ‖ ) and (  ‖ ‖ ) be normed 

spaces and       be a function where    . The function   is Gateaux 

differentiable at point     if for a nonzero element   of  ,  

   
   

 (    )   ( )

 
 

exists. The limit is called the derivative of  ( ) at   denoted by   ( ).  

 

Even though these derivative definitions are different, we notice the 

similarities between the definitions. The limits of these definitions are similar to 

that of the definition of the standard derivative of real-valued functions indicating 

that the derivatives use the same approach. These limits illustrate a function value 

approaching another one as its input approaches that of the other function value. 
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2.2 Newton-Raphson Method 

The Newton-Raphson is an iterative numerical method to find a root of a 

real-valued function. Let       be a continuous real function. The root of   is 

approximated by the iteration 

        
 (  )

  (  )
 

with a taken    as the initial value. The iteration converges to the root if certain 

conditions are satisfied (Epperson, 2013). 

The iteration certainly involves a derivative, and it is the standard one of 

real-valued functions. In this case, we discover the Newton-Raphson method of 

real-valued functions in different one-dimensional real metric spaces using the 

three derivative definitions. The developed Newton-Raphson iterations use 

different “distances” used in the derivative for each metric derivative. 

2.3 Derivative of Real-Valued Functions in Discrete Metric Space 

Discrete metric space is a metric space whose metric results either   if the 

elements are the same or   if these elements are different (Kreyszig, 1978). 

 

Lemma 2.1. Let (   ) be a space where        is a function defined by 

  {
     
     

  

for      . Then, the space (   ) is a metric space called the discrete metric 

space. 

 

We can construct derivatives of real-valued functions with the three 

definitions except for the Gateaux derivative since the discrete metric space 

cannot be induced into a normed space as the following Lemma 2.2 proves. 

 

Lemma 2.2. A discrete metric space cannot be induced by any normed space. 

Proof. Suppose that a discrete metric space (   ) could be induced by a normed 

space (  ‖ ‖). Then, by (Kreyszig, 1978), for every      , 

 (   )  ‖   ‖  
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Hence, we have 

‖   ‖  {
     
     

  

Since (  ‖ ‖) is a normed space, it satisfies the properties of norms as defined by 

Definition 2.2. Therefore, it must be that for a non-zero-and-non-unit scalar   of 

 , 

   ‖(   )‖  ‖ (   )‖  

Suppose that     so that      and ‖   ‖   . Then, we have 

   ‖   ‖     ‖   ‖      

and 

‖ (   )‖  ‖     ‖    

which lead to    ‖(   )‖  ‖ (   )‖, a contradiction and is only satisfied if 

    or    . Therefore, any normed space cannot induce a discrete metric 

space.                                                                                                                         

 

Based on Lemma 2.2, we only construct the derivatives defined by Definition 2.4 

(absolute derivative) and Definition 2.5 (parameterised derivative). 

In this paper, we limit the scope of real-valued functions observed to 

injective and constant ones. The derivatives of functions other than these two need 

to be investigated further in future research. 

 

Theorem 2.1. An injective function         is differentiable on an open 

interval     under the absolute derivative, and   ( )    for every    . 

Proof. Let   be arbitrary positive number and    . Choose       that is 

indeed positive. Suppose that     since     implies that    (   )    is 

untrue. Thus,  (   )    and 

   (   )         (   )     

Since     and   injective, we have  ( )   ( ) for every      . Therefore, 

|
 ( ( )  ( ))

 (   )
  |  |

 

 
  |             
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By Definition 2.4, it is shown that   is differentiable on   under the absolute 

derivative, and   ( )    for every    .                                                               

 

Theorem 2.2. A constant function         is differentiable on an open 

interval     under the absolute derivative, and   ( )    for every    . 

Proof: Let   be arbitrary positive number and    . Choose       that is 

indeed positive Suppose that     since     implies that    (   )    is 

untrue. Thus,  (   )    and 

   (   )         (   )     

 Since   constant, we have  ( )   ( ) for every      . Therefore, 

|
 ( ( )  ( ))

 (   )
  |  |

 

 
  |             

By Definition 2.4, it is shown that   is differentiable on   under the absolute 

derivative, and   ( )    for every    .                                                               

 

Example 2.1. Let         with  ( )       for every    . Since   is 

injective on   (  
 

 
),   is differentiable on   under the absolute derivative with 

  ( )    for every     by Theorem 2.1.                                                             

 

Example 2.2. Let       with  ( )      for every    . Hence,   is 

injective on  . By Theorem 2.1,   is differentiable everywhere with   ( )    

for every    . We next to show how to use the     definition of the absolute 

derivative to prove that the function   is differentiable at     under the absolute 

derivative with   ( )   . For every    , choose a positive number      . 

Thus,  if    (   )   , satisfied by      then 

|
 ( ( )  ( ))

 (   )
  |  |

 (       )

 (   )
  |  |

 (     )

 (   )
  | 

                                                      |
 

 
  |                                                    

 

Now, consider the parameterised derivative. 
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Theorem 2.3. A constant function         is differentiable on an open 

interval     under the parameterised derivative, and   ( )    for every   

 . 

Proof. We show that   ( )   . Let   be an arbitrary positive number. Choose 

      that is indeed positive. Let   be a real number such that    (   )  

 . Since        , it must be that    , and since   is constant, we have  

 ( )   (   ) for every     and    . Therefore, 

                   |
 ( (   )  ( ))

   
  |  |

 (   )

   
  |                             

 

Theorem 2.4. An injective function         is not differentiable on an 

open interval     under the parameterised derivative.  

Proof. To prove that   is not differentiable at  , we use the negation of Definition 

2.5. In other words, we show that for every    , there exist     and     

implying that for every    , there exists     and     such that   

 (   )    but |
 ( (   )  ( ))

   
  |   . We consider two cases:     and   

 . 

Suppose that    . Choose   
 

 
  , and let   be arbitrary positive real 

number. Take     such that         and   (   ). Then, it must be that 

   , 
 

   
  , and  ( (   )  ( ))   . For    , the statement   

 (   )    is untrue since     implies  (   )   . Therefore, the statement 

“if    (   )   , then  |
 ( (   )  ( ))

   
  |   " is true by vacuous proof. For 

   , it satisfies    (   )   . Therefore, we have 

|
 ( (   )  ( ))

   
  |  |

 

   
  |  

 

   
   

 

 
    

Thus if   is arbitrary positive, we have 

|
 ( (   )  ( ))

   
  |     
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Suppose that    . Choose   
   

 
 that is indeed positive. Let   be 

arbitrary positive real number. Take     such that     
 

    
 and   (   )  

Therefore, it must be that      , 
 

   
     , and  ( (   )  ( ))   . For 

   , the statement    (   )    is untrue since     implies  (   )   . 

Therefore, the statement “if    (   )   , then  |
 ( (   )  ( ))

   
  |   " is 

true by vacuous proof. For    , it satisfies    (   )   . Then, by the 

triangle inequality, we have 

|
 ( (   )  ( ))

   
  |  |

 

   
  |  

 

   
              

                                                                              
   

 
                                

 

Now we have both derivatives that result in constant functions. By Theorem 

2.2 and Theorem 2.3, since the absolute and parameterised derivative of constant 

functions are    another constant function, the second derivative of both 

derivatives also   and so on. Therefore, we have the following result for the high-

order derivatives. 

 

Corollary 2.1. If   is a constant function of the discrete metric space, then  

 ( )( )    under absolute and parameterised derivative for            . 

 

The proof of Corollary 2.1 is derived from Theorem 2.2 and 2.3 by induction. 

2.4 Newton-Raphson Method in Discrete Metric Space 

Let       be a real-valued function where   is a subset of the real 

discrete metric space. We develop the Newton-Raphson methods to find a root of 

  using the iteration 

        
 (  )

  (  )
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and the constructed absolute and parameterised derivative. The   (  ) in the 

iteration is adjusted to the derivatives. 

Since constant functions do not have a root except for  ( )   , it is not 

necessary to construct the Newton-Raphson method for such functions. Thus, we 

recall the absolute derivative constructed by Theorem 2.1 for injective function. 

That is, for every differentiable injective function      , 

  ( )     

Then, for     , we have 

  (  )     

Assuming  (    )   (  ), we have 

        
 (  )

 
          (  )  

Depending on the choice of   , the iteration could converge to the root. 

Moreover, (Epperson, 2013) provides the following theorem that determines the 

convergence of the Newton-Raphson method for the standard derivative. 

 

Theorem 2.5. Let       be a real-valued function differentiable twice at  , 

and for some  ,  ( )    i.e.   is a root of  . Define 

  
   
   

    ( ) 

    
   

   ( ) 
 

that is assumed to be not infinity. Then, for any initial value    satisfying 

           

The Newton-Raphson iteration converges. 

 

We examine if Theorem 2.1 also holds for the Newton-Raphson method for 

absolute derivative. Let       be a real-valued injective function of the 

discrete metric space. Then, by Theorem 2.1 and Corollary 2.1, for every    . 

  ( )    

and 

   ( )     

Then, we have 



124                                                                                                         I. Herdiana dkk 

 

   
   

   ( )     

and 

  
   
   

    ( ) 

    
   

   ( ) 
 

 

 ( )
    

Therefore, the expression 

          

is always satisfied since    , thus implying that the Newton-Raphson iteration 

always converges regardless of the choice of   . This claim appears to be 

bombastic and definitely needs further investigation. 

Another convergence criterion of the Newton-Raphson method is also 

examined in (Khandani, 2021). We suppose the notation  (  ) and  (  ) 

mean left-derivative and right-derivative respectively. The one-side direction is 

determined by the direction of limit in the derivative definition. Here is the 

criterion. 

 

Theorem 2.6. Let   [   ]    be a real-valued function where   is the unique 

root of   in [   ], and   is differentiable twice on (   ). If  ( )   ( )   ,  

 ( )  ( )   , and   ( )    for every   (   ),   (  )   , and   (  )  

 1, for an initial value    [   ], then the Newton-Raphson iteration converges 

to  . 

 

If   [   ]    is an injective function,   ( )    and    ( )    for every 

  [   ]. Then,  ( )   ( )   ,   ( )   ,   (  )   , and   (  )    . If 

   , then  ( )  ( )    is untrue, and the theorem holds by vacuous proof. If 

   , then  ( )  ( )    is true implying that the theorem holds. 

Since the theorem holds for injective functions, the Newton-Raphson 

always converges. However, we should investigate it further since claiming that 

the iteration always converges requires a mathematically valid proof. 

Here is an example of the use of the Newton-Raphson. 

                                                           
. 
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Example 2.3. Find the root of the function   [       ]    defined by  

 ( )          with the Newton-Raphson method for initial values      and 

    . 

Solution. According to the function graph illustrated by GeoGebra as in Figure 

2.1,   has a root around     . Here is the iteration    for              with 

       . 

Table 2.1 The Iteration for         

  0 1 2 3 4 5 

                                                    

  6 7 8 9 10 11 

                                                         

 

 

 

Figure 2.1 The Graph of  ( )          at [       ] 
 

Here is such iteration for        . 

Table 2.2 The Iteration for         

  0 1 2 3 4 5 

                                                     

  6 7 8 9 10 11 
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It can be seen from Table 2.1 and Table 2.2 that the iterations seem to converge or 

approach the root despite the initial values of both relatively far from the actual 

root. Moreover, the convergence is fast; it can be seen even before the 10
th

 

iteration.                                                                                                                    

 

This one example (Example 2.3) alone does not represent the overall 

convergence of the Newton-Raphson scheme. However, it does indicate the 

possibility of finding a root using the scheme. Further investigation is interesting 

for future research. 

The only functions differentiable under parameterised derivative are 

constant functions, and constant functions do not have a root unless it equals  . 

Therefore, it is not necessary to construct the Newton-Raphson method for this 

derivative. 

 

3. CONCLUSION AND SUGGESTION 

Not every function in one-dimensional real discrete metric space whose 

domain is a subset of the set of all real numbers is differentiable under absolute 

derivative and parameterised derivative. Examples of functions that are 

differentiable under absolute derivative are constant functions and injective 

functions whose derivative are   and   respectively, and the functions that are 

differentiable under parameterised derivative are constant functions whose 

derivative is  . The definability of absolute derivatives for injective functions 

enables the construction of the Newton-Raphson methods for the corresponding 

derivative, and the iterations indicate the possibility of a new approach to function 

root approximation. 

This research still has gaps that have potential to become further research 

topics. They include deeper investigation of the derivative properties, such as 

linearity and patterns of certain functions, and such derivatives for non-constant 

and non-injective functions. Other interesting ones are convergence criteria of the 

Newton-Raphson method in discrete metric space.  

 



The Newton-Raphson Method in Discrete Metric Space                                                127 

 

REFERENCES 

Ambrosio, L., Gigli, N., dan Savaré, G., Gradient Flows in Metric Spaces and in 

the Space of Probability Measures. Birkhäuser Verlag: ETH Zurich, 2005. 

Bartle, R. G. dan Sherbert, D. R., Introduction to Real Analysis, John Wiley & 

Sons, Inc., New Jersey, 2011. 

Charatonik, W. J. dan Insall, M., Absolute Differentiation in Metric Spaces, 

Houston Journal of Mathematics, 38(4) (2012), 1313-1328, Retrieved from 

https://www.researchgate.net/publication/259674953_Absolute_differentiati

on_in_metric_spaces. 

Chouhan, A. S. dan Gaur, M., Current Role of Numerical Analysis in 

Mathematics, International Journal for Modern Trends in Science and 

Technology, 8(6) ) (2022), 412-418. doi:10.46501/IJMTST0806071. 

Coleman, R., Calculus on Normed Vector Spaces. Springer, New York, 2012.. 

Epperson, J. F., An Introduction to Numerical Methods and Analysis, John Wiley 

& Sons, Inc., New Jersey, 2013. 

Khandani, H., A Convergence Condition for Newton-Raphson Method, 2021 

ArXiv. Retrieved from https://arxiv.org/abs/2112.04898. 

Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & 

Sons. Inc., New Jersey, 1978. 

Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, New York, 1986. 

 

 

 

 

 

 

 

 

 

 

 



128                                                                                                         I. Herdiana dkk 

 

 

 


