TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR

Shelvi Ekariani

KK Analisis dan Geometri FMIPA ITB shelvi_ekariani@students.itb.ac.id

Hendra Gunawan

KK Analisis dan Geometri FMIPA ITB hgunawan@math.itb.ac.id

ABSTRACT. On the standard n-normed space, i.e an inner product space equipped with the standard n-norm, one can derive a norm from the n-norm in a certain way. The purpose of this note is to establish the equivalence between such a norm and the usual norm on standard n-normed space. Further, this fact together with others use to prove a fixed point theorem on the standard n-normed space.

Keywords: standard n-normed space, equivalence, fixed point theorem

ABSTRAK. Pada ruang norm-n standar, yaitu ruang hasil kali dalam yang dilengkapi dengan norm-n standar, dapat diperoleh suatu norm dari norm-n dengan cara tertentu. Tujuan makalah ini adalah untuk menunjukkan ekuivalensi antara norm tersebut dan norm biasa yang didefinisikan pada ruang norm-n standar. Lebih jauh fakta ini digunakan untuk membuktikan suatu teorema titik tetap pada ruang norm-n standar.

Kata Kunci: ruang norm-n standar, ekuivalensi, teorema titik tetap

1. PENDAHULUAN

Pada tahun 1960-an, Gähler (1994, 1969a, 1969b, 1969c, 1970) memperkenalkan teori ruang norm-n. Suatu norm-n pada ruang vektor real X (dimana $\dim(X) \ge n$) adalah pemetaan $\|\cdot, \dots, \cdot\|: X^n \to \mathbb{R}$, yang memenuhi:

- 1. $||x_1, ..., x_n|| = 0$ jika dan hanya jika $x_1, ..., x_n$ bergantung linear,
- 2. $||x_1, ..., x_n||$ invarian terhadap permutasi,
- 3. $\|\alpha x_1, \dots, x_n\| = \|\alpha\| \|x_1, \dots, x_n\|$, untuk setiap $\alpha \in \mathbb{R}$,
- 4. $||x_1 + x, ..., x_n|| \le ||x_1, ..., x_n|| + ||x, ..., x_n||$.

Pasangan $(X, \|\cdot, ..., \cdot\|)$ disebut *ruang norm-n*. Pada ruang norm-*n* berlaku sifat $\|x_1 + y, x_2, ..., x_n\| = \|x_1, x_2, ..., x_n\|$, untuk setiap $y = \alpha_2 x_2 + \cdots + \alpha_n x_n$.

Pada tahun 2001, Gunawan [1] memformulasikan Teorema Titik Tetap pada ruang norm-*n* sebagai berikut:

Teorema 1.1. *Misalkan pemetaan* $T: X \to X$, *sedemikian sehingga*

$$||Tx_1 - Tx, x_2, ..., x_n|| \le C||x_1 - x, x_2, ..., x_n||,$$

Untuk setiap $x, x_1, ..., x_n \in X$ dan $C \in (0,1)$. Maka T mempunyai titik tetap yang tunggal, yaitu terdapat $x \in X$ sedemikian sehingga Tx = x.

Pada makalah ini, akan ditunjukkan bahwa setiap ruang norm-n khususnya ruang norm-n standar dengan $n \geq 2$ adalah ruang norm yang dilengkapi dengan suatu norm yang diturunkan dari norm-n. Lebih lanjut, fakta ini digunakan untuk membuktikan Teorema Titik Tetap pada ruang norm-n standar yang lebih umum versi Gunawan. Kemudian di (Nur, 2011), telah dibahas Teorema Titik Tetap pada ruang norm-n standar. Berbeda dengan yang telah dibahas di (Nur, 2011), pada makalah ini pembuktian ekuivalensi antara norm yang diperoleh dari norm-n dengan norm biasa yang didefinisikan pada X tidak melalui kekonvergenan barisan tetapi dengan menggunakan definisi norm dan sifat-sifatnya.

2. TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR

Misalkan X adalah ruang hasil kali dalam dengan dimensi $d \ge n$ (d boleh tak hingga). Ruang vektor X yang dilengkapi dengan norm-n standar, yang didefinisikan sebagai:

$$||x_1, \dots, x_n||_s \coloneqq \begin{vmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \end{vmatrix}^{\frac{1}{2}},$$
$$\vdots & \ddots & \vdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{vmatrix}^{\frac{1}{2}},$$

dimana $\langle \cdot, \cdot \rangle$ menyatakan hasil kali dalam pada X, merupakan ruang norm-n standar.

2.1 Norm yang diturunkan dari norm-n

Seperti yang telah dipaparkan pada abstrak, suatu norm dapat diperoleh dari suatu norm-*n*, khususnya norm-*n* standar. Sehingga diperoleh teorema berikut.

Teorema 2.1. Misalkan $\{a_1, ..., a_n\}$ adalah himpunan bebas linear pada X. Maka fungsi

$$\|x\|_1^* \coloneqq \left(\sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} \|x,a_{i_2},\dots,a_{i_n}\|_s^2\right)^{\frac{1}{2}},$$

mendefinisikan norm pada X.

Bukti. Dari pendefinisian norm di atas, jelas bahwa $||x||_1^* \ge 0$. Kemudian jika x = 0 maka $||x||_1^* = 0$, dan bersifat $||\alpha x||_1^* = |\alpha|||x||_1^*$, untuk setiap $\alpha \in \mathbb{R}$ serta memenuhi ketaksamaan segitiga. Selanjutnya, jika $||x||_1^* = 0$, maka tanpa mengurangi keumuman diperoleh

$$||x, a_2, a_3, \dots, a_n||_s = 0,$$
 (1)

$$\|a_1, x, a_3, \dots, a_n\|_s = 0,$$
 (2)

$$\|a_1, a_2, x, \dots, a_n\|_s = 0,$$
 (3)

dan seterusnya, sampai diperoleh,

$$||a_1, a_2, \dots, a_{n-1}, x||_s = 0,$$
 (4)

Dari (2) diperoleh x merupakan kombinasi linear dari $\{a_2, a_3, ..., a_n\}$, misalkan

$$x = \sum_{i=2}^{n} k_i \, a_i.$$

Dari (3) diperoleh $k_1 = 0$ dan seterusnya, sehingga diperoleh x = 0.

Jadi
$$||x||_1^*$$
 mendefinisikan norm pada X .

Selanjutnya, akan ditunjukkan bahwa norm $\|\cdot\|_1^*$ ekuivalen dengan norm $\|\cdot\| = \langle\cdot,\cdot\rangle^{\frac{1}{2}}$. Sebelum itu, didefinisikan

$$||x||_2^* \coloneqq \left(\sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} ||x,b_{i_2},\dots,b_{i_n}||_S^2\right)^{\frac{1}{2}},$$

dengan $\{b_1, ..., b_n\}$ adalah himpunan orthonormal yang diperoleh dari himpunan bebas linear $\{a_1, ..., a_n\}$ melalui proses Gram-Schmidt. Dari Teorema 2.1 diperoleh $\|x\|_2^*$ juga merupakan norm pada X.

Lebih lanjut, diperoleh fakta di bawah ini.

Proposisi 2.2. Norm $\|\cdot\|_2^*$ ekuivalen dengan norm $\|\cdot\|_1^*$.

Bukti. Dengan melakukan proses Gram-Schmidt pada himpunan bebas linear $\{a_1, ..., a_n\}$, diperoleh

$$b_1 = c_1 a_1$$

sedemikian sehingga

$$a_1 = k_1 b_1$$
.

Kemudian,

$$b_2 = d_1 a_1 + d_2 a_2.$$

Dengan mensubstitusi nilai a_1 , diperoleh

$$a_2 = l_1 b_1 + l_2 b_2$$
.

Proses dilanjutkan, sampai diperoleh

$$b_n = p_1 a_1 + \dots + p_n a_n.$$

Dengan mensubstitusi nilai-nilai $a_1, a_2, ..., a_{n-1}$, diperoleh

$$a_n = r_1 b_1 + \dots + r_n b_n.$$

Akibatnya,

$$\|x, b_1, \dots, b_{n-1}\|_{s} = \left\|x, c_1 a_1, d_1 a_1 + d_2 a_2, \dots, \sum_{i=1}^{n-1} p_i a_i\right\|_{s} \le |\alpha| \|x, a_1, \dots, a_{n-1}\|_{s},$$

dan

$$\|x,a_1,\dots,a_{n-1}\|_{s} = \left\|x,k_1b_1,l_1b_1+l_2b_2,\dots,\sum_{i=1}^{n-1}r_ib_i\right\|_{s} \leq |\beta|\|x,b_1,\dots,b_{n-1}\|_{s}.$$

Kemudian, perhatikan bahwa

$$\begin{split} \|x\|_{2}^{*} &= \left(\sum_{\{i_{2},\dots,i_{n}\}\subseteq\{1,\dots,n\}} \left\|x,b_{i_{2}},\dots,b_{i_{n}}\right\|_{s}^{2}\right)^{\frac{1}{2}} \leq \\ &\left(\alpha^{2} \sum_{\{i_{2},\dots,i_{n}\}\subseteq\{1,\dots,n\}} \left\|x,a_{i_{2}},\dots,a_{i_{n}}\right\|_{s}^{2}\right)^{\frac{1}{2}} = |\alpha| \|x\|_{1}^{*}. \end{split}$$

Dengan cara yang sama, diperoleh

$$||x||_1^* \le |\beta| ||x||_2^*.$$

Proposisi 2.3. Norm $\|\cdot\|_2^*$ ekuivalen dengan norm biasa $\|\cdot\| = \langle \cdot, \cdot \rangle^{\frac{1}{2}}$ di X, yaitu $\|x\| \le \|x\|_2^* \le \sqrt{n} \|x\|$,

untuk setiap $x \in X$.

Bukti. Untuk setiap $x\in X$ dan $\{b_1,\dots,b_n\}$ himpunan orthonormal di X, perhatikan bahwa

$$\|x,b_2,\dots,b_n\|_s^2 = \begin{vmatrix} \langle x,x \rangle & \langle x,b_2 \rangle & \langle x,b_3 \rangle & \dots & \langle x,b_n \rangle \\ \langle b_2,x \rangle & 1 & 0 & \dots & 0 \\ \langle b_3,x \rangle & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \langle b_n,x \rangle & 0 & 0 & \cdots & 1 \end{vmatrix} = \|x\|^2 - \sum_{i=2}^n |\langle x,b_i \rangle|^2.$$

Dengan cara yang sama, diperoleh

$$||b_1, x, b_3, \dots, b_n||_s^2 = ||x||^2 - \sum_{\substack{i=1\\i\neq 2}}^n |\langle x, b_i \rangle|^2,$$

:

$$||b_1, b_2, ..., b_{n-1}, x||_s^2 = ||x||^2 - \sum_{i=1}^{n-1} |\langle x, b_i \rangle|^2.$$

Dengan menggunakan ketaksamaan Bessel $\sum_{i=1}^{n} |\langle x, b_i \rangle|^2 \le ||x||^2$, diperoleh

$$\begin{split} \|x\|^2 &\leq \|x\|^2 - \sum_{i=2}^n |\langle x, b_i \rangle|^2 + \|x\|^2 - \sum_{\substack{i=1 \\ i \neq 2}}^n |\langle x, b_i \rangle|^2 + \dots + \|x\|^2 - \sum_{i=1}^{n-1} |\langle x, b_i \rangle|^2 \\ &= \sum_{\{i_2, \dots, i_n\} \subseteq \{1, \dots, n\}} \left\| x, b_{i_2}, \dots, b_{i_n} \right\|_{\mathcal{S}}^2 = \|x\|_2^*. \end{split}$$

Dengan menggunakan ketaksamaan Hadamard $\|x_1, x_2, ..., x_n\| \le \|x_1\| ... \|x_n\|$, diperoleh

$$\begin{split} (\|x\|_2^*)^2 &= \sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} \left\|x,b_{i_2},\dots,b_{i_n}\right\|_s^2 \leq \left(\sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} \left\|b_{i_2}\right\|^2 \dots \left\|b_{i_n}\right\|^2\right) \|x\|^2 \\ &= n\|x\|^2. \end{split}$$

Akibat 2.4. Norm $\|\cdot\|_1^*$ ekuivalen dengan norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{\frac{1}{2}}$.

2.2 Kelengkapan dan Kekonvergenan Barisan

Barisan (x(k)) di ruang norm-n X dikatakan konvergen ke $x \in X$ dalam norm-n, jika

$$\lim_{k \to \infty} ||x(k) - x, x_2, \dots, x_n|| = 0,$$

untuk setiap $x_2, ..., x_n \in X$.

Kemudian barisan (x(k)) di ruang norm-n X dikatakan Cauchy, jika

$$\lim_{k,l \to \infty} ||x(k) - x(l), x_2, \dots, x_n|| = 0,$$

untuk setiap $x_2, ..., x_n \in X$.

Ruang norm-n X dimana setiap barisan Cauchy $(x(k)) \in X$ konvergen ke $x \in X$, disebut ruang norm-n yang lengkap. Lebih lanjut, ruang norm-n yang lengkap disebut ruang Banach-n.

Sebelum Teorema Titik Tetap, diperoleh hasil berikut.

Teorema 2.5. Barisan $(x(k)) \in X$ konvergen ke $x \in X$ dalam norm-n standar $\|\cdot, ..., \cdot\|_s$ jika dan hanya jika (x(k)) konvergen ke x dalam norm $\|\cdot\|$. Serupa dengan itu $(x(k)) \in X$ Cauchy dalam norm-n standar jika dan hanya jika (x(k)) Cauchy dalam norm $\|\cdot\|$.

Bukti. Misalkan (x(k)) konvergen ke $x \in X$ dalam norm-n standar $\|\cdot, ..., \cdot\|_{s}$, yaitu $\lim_{k \to \infty} \|x(k) - x, a_{i_{2}}, ..., a_{i_{n}}\|_{s} = 0$ untuk setiap $\{i_{2}, ..., i_{n}\} \subseteq \{1, ..., n\}$. Akibatnya $\lim_{k \to \infty} \|x(k) - x\|_{1}^{*} = \lim_{k \to \infty} \sum_{\{i_{2}, ..., i_{n}\} \subseteq \{1, ..., n\}} \|x(k) - x, a_{i_{2}}, ..., a_{i_{n}}\|_{s}^{2} = 0$.

Selanjutnya dari fakta $\lVert \cdot \rVert_1^*$ dan $\lVert \cdot \rVert$ ekuivalen, diperoleh

$$\lim_{k\to\infty}||x(k)-x||=0.$$

Sebaliknya, misalkan $x_2,\ldots,x_n\in X$ dan $(x(k))\in X$ konvergen ke $x\in X$ dalam norm $\|\cdot\|$, yaitu $\lim_{k\to\infty}\|x(k)-x\|=0$. Kemudian dengan menggunakan ketaksamaan Hadamard, perhatikan bahwa

$$||x(k) - x, x_2, ..., x_n||_{S} \le ||x(k) - x||_{S} ||x_2||_{S} ... ||x_n||_{S}.$$

Ruas kanan ketaksamaan di atas menuju nol jika k menuju tak hingga, sehingga $\|x(k)-x,x_2,...,x_n\|_s$ menuju nol jika k menuju tak hingga. Dengan kata lain $\lim_{k\to\infty}\|x(k)-x,x_2,...,x_n\|_s=0$, yang artinya (x(k)) konvergen ke x dalam norm-n standar $\|\cdot,...,\cdot\|_s$.

Dengan cara yang sama, $(x(k)) \in X$ Cauchy dalam norm-n standar jika dan hanya jika (x(k)) Cauchy dalam norm $\|\cdot\|$.

Akibat 2.6. Ruang norm-n standar $(X, \|\cdot, ..., \cdot\|_s)$ merupakan ruang Banach-n jika dan hanya jika ruang norm standar $(X, \|\cdot\|_s)$ merupakan ruang Banach.

Teorema 7. (Teorema Titik Tetap) Misalkan $T: X \to X$ pemetaan kontraktif terhadap himpunan bebas linear $\{a_1, ..., a_n\}$ di X, yaitu terdapat $k \in (0,1)$, sedemikian sehingga

$$||Tx - Ty, a_{i_2}, ..., a_{i_n}||_{s} \le k ||x - y, a_{i_2}, ..., a_{i_n}||_{s}$$

untuk setiap $x, y \in X$ dan $\{i_2, ..., i_n\} \subseteq \{1, ..., n\}$. Maka T mempunyai titik tetap yang tunggal di X.

Bukti. Dari Akibat 4, diperoleh bahwa $(X, \|\cdot\|_1^*)$ merupakan ruang Banach. Lebih lanjut, perhatikan bahwa

$$\begin{split} (\|Tx-Ty\|_1^*)^2 &= \sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} \left\|Tx-Ty,a_{i_2},\dots,a_{i_n}\right\|_s^2 \\ &\leq \sum_{\{i_2,\dots,i_n\}\subseteq\{1,\dots,n\}} k^2 \left\|x-y,a_{i_2},\dots,a_{i_n}\right\|_s^2 = k^2 (\|x-y\|_1^*)^2. \end{split}$$

Sehingga diperoleh

$$||Tx - Ty||_1^* \le k||x - y||_1^*$$

untuk setiap $x, y \in X$.

Ketaksamaan terakhir menyatakan bahwa T merupakan pemetaan kontraktif terhadap $\|\cdot\|_1^*$. Karena $(X, \|\cdot\|_1^*)$ merupakan ruang Banach, maka berdasarkan Teorema Titik Tetap pada ruang Banach, T mempunyai titik tetap yang tunggal.

3. KESIMPULAN

Dalam ruang norm-*n* standar, yaitu ruang hasil kali dalam yang dilengkapi dengan norm-*n* standar, dapat didefinisikan suatu norm yang diperoleh dari norm-*n* dengan cara tertentu. Kemudian diperoleh fakta bahwa norm yang diturunkan dari norm-*n* tersebut ekuivalen dengan norm biasa yang didefinisikan pada ruang hasil kali dalam. Dengan fakta ini diperoleh bahwa kekonvergenan dan kelengkapan barisan dalam norm-*n* mengakibatkan kekonvergenan dan kelengkapan barisan dalam norm, begitu juga sebaliknya. Lebih jauh, telah diperoleh Teorema Titik Tetap pada ruang norm-*n* standar yang lebih umum daripada yang telah dirumuskan di (Gunawan dan Mashadi, 2001).

Ucapan Terima Kasih. Penelitian ini merupakan bagian dari Program Doktor Unggulan ITB, yang didanai oleh Proyek IMHERE ITB Tahun 2011-2012.

DAFTAR PUSTAKA

Gunawan, H dan Mashadi. (2001), On n-Normed Spaces. Int. J. Math. 27, 631-639.

- Nur,M. (2011), Teorema Titik Tetap di Ruang Norm-n Standar. *Tesis Magister Matematika ITB*.
- Gähler, S. (1964), Lineare 2-Normierte Raume, Math. Nachr. 28, 1-43.
- Gähler, S. (1969a), Uber 2-Banach Raume. Math. Nachr. 42, 335-347.
- Gähler, S. (1969b), Untersuchungen Uber Verallgemeinerte *m*-Metrische Raume I. *Math. Nachr.* **40**, 165-189.
- Gähler, S. (1969c), Untersuchungen Uber Verallgemeinerte *m*-Metrische Raume II. *Math. Nachr.* **40**, 229-264.
- Gähler, S. (1970), Untersuchungen Uber Verallgemeinerte *m*-Metrische Raume III. *Math. Nachr.* **41**, 23-26.