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ABSTRACT. A nonlinear spring is a type of oscillator that does not follow Hooke's law
perfectly. In mathematics, this type of oscillator can be modeled in a nonlinear ordinary
differential equation. Of the many discussions on oscillation models, one examines the
behavior of the model when disturbed by a parameter with a very small value. In this
study, a discussion will be conducted regarding the behavior of the oscillation model with
external forces added to the disturbance parameters in the damping and spring stiffness
terms. To observe this behavior, one of the techniques in asymptotic analysis called the
multiple time scales method is used. The results of this study will show the behavior of the
oscillation model with the disturbance parameters caused by the resonance that occurs.
To provide a clearer picture, the oscillations that occur are presented in the form of a
simulation result graph, containing a comparison between the approximate solution and
the numerical solution. Based on the discussion given, it is concluded that the oscillations
in the model are strongly influenced by a certain relationship between the natural
frequency of the nonlinear spring and the frequency of the external force acting on the
model.

Keywords: asymptotic analysis, multiple time scales, oscillation model, nonlinear spring,
resonance.

ABSTRAK. Suatu pegas tak linier merupakan salah satu jenis osilator yang tidak
mengikuti hukum Hooke secara sempurna. Dalam matematika, osilator jenis ini dapat
dimodelkan dalam suatu persamaan diferensial biasa tak linier. Dari banyak diskusi yang
membahas model osilasi, salah satunya mengkaji perilaku dari model ketika diganggu
oleh suatu parameter yang bernilai sangat kecil. Pada penelitian ini akan dilakukan
pembahasan mengenai perilaku dari model osilasi dengan gaya luar yang ditambahkan
parameter gangguan pada suku redaman dan kekakuan pegas. Untuk melihat perilaku
tersebut, digunakan salah satu teknik dalam analisis asimtotik yang disebut metode
multiple time scales. Hasil dari penelitian ini akan menunjukkan perilaku dari model
osilasi dengan parameter gangguan yang diakibatkan oleh resonansi yang terjadi. Guna
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memberikan gambaran yang lebih jelas, osilasi yang terjadi disajikan dalam bentuk grafik
hasil simulasi, memuat perbandingan antara solusi hampiran dan solusi numerik.
Berdasarkan pembahasan yang diberikan, disimpulkan bahwa osilasi pada model sangat
dipengaruhi oleh hubungan tertentu antara frekuensi alami pegas tak linier dengan
frekuensi gaya luar yang bekerja pada model.

Kata Kunci: Analisis asimtotik, multiple time scales, model osilasi, pegas tak linier,
resonansi.

1. INTRODUCTION

The integration of human social life with technology has brought the world
into the era of society 5.0. The existence of technology today helps make modern
human life easier, and has resulted in an increase in human needs for materials to
support this technology (Kariarta, 2020). Of the many types of technology, some
require oscillators with damping so that the system can work properly and reduce
risks in its use. In physics, an oscillator is a periodic motion system that passes
through an equilibrium point for a certain period of time (Kusumadjati, et al.,
2017). The oscillator itself is one of the important things in engineering that
continues to be studied in depth. One type of oscillator is a spring, which is often
associated with Hooke's law. It does not apply perfectly to nonlinear springs,
because the approximation to Hooke's law is linear. Due to its nonlinearity,
nonlinear spring models cannot be solved explicitly. In mathematics, these models
are given as nonlinear ordinary differential equations.

Several studies that discuss nonlinear spring models are often associated
with the Duffing equation. For example, research conducted by Illahi et al. (2024)
investigated the solution of the Duffing equation using exponential time
differencing method and showed its effectiveness for strongly nonlinear
differential equations. There is also Guang-Qing Feng (2021) who discussed the
approximate frequency of a fractal oscillator in the undamped duffing equation,
using the two-scale transform method and the fractal frequency formula. In
addition, there is research conducted by Tarini K. Dutta and Pramila K. Prajapati
(2016) which discussed the dynamic properties of the nonlinear duffing equation
with damping terms and external forces. The study showed that the model

behaves in a periodic and chaotic behavior even though it is given a perturbation
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in the form of a linear term.

Another research on the Duffing equation has also been conducted by
Gusrian Putra et al. (2023) who discussed the solution of the homogeneous
Duffing oscillator equation using the multiple scales method, which is included in
the asymptotic solution method. In the same study, Gusrian Putra et al. (2023)
showed the existence of limit cycles in the dynamics of the duffing equation used.
The same method was also used by Eric Harjanto et al. (2021) in studying the
resonance of a weak nonlinear microbeam caused by electric actuation in two
parts. The first part of the paper provides accurate approximations of the natural
frequencies as well as the superharmonic and subharmonic resonance frequencies
of the actuated microbeam up to order &3, while the second part considers a
viscous damping term of order £ and structural damping and nonlinar elastic
forces of order £2.

Furthermore, another study that apply the multiple time scale method has
also been carried out on a certain model, such as that carried out by Nikenasih et
al. (2024) who presented a new approach to applying this method to delay
differential equations. The paper shows that the infinitely many roots of the
characteristic equation of the delay differential equations can be taken into
account, and the initial condition over the time interval determined by the delay
can be satisfied. Besides that,

In this study, the equation studied is included in the nonhomogeneous and
nonlinear ordinary differential equations. Using the multiple time scales method,
we will discuss the asymptotic analysis of the nonlinear oscillation equation,
where the equation is given a very small perturbation on the damping term and the
nonlinear term. In contrast to Tarini K. Dutta and Pramila K. Prajapati (2016)
which only considered the dynamical behavior of the forced spring equation, the
study in this research focuses on the behavior of springs resulting from the
relationship between the natural frequency and the frequency of the excitation
force. This study also investigates superharmonic and subharmonic resonance,
similar to the work conducted by Eric Harjanto et al. (2021). However, the

analysis is limited to the order of &, with a relatively brief discussion that is
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nonetheless sufficient to provide an overview of the model’s behavior.
Furthermore, the simulation will present a comparison between two curves, each
of which is generated by the asymptotic solution and also the numerical solution
resulting from the Runge-Kutta method available in Python software. The
differences between the two simulations performed will also be visualized in the
absolute error graph. Thus, this study contributes to a clearer understanding of the
effects of resonance on the behavior of nonlinear springs under small

perturbations.

2. METHODS

This research was conducted by reviewing the literature on previous studies.
Several things related to the methods used will be discussed in this section.
Multiple time scales method is used as an asymptotic analytical method, while the
Dormand-Prince scheme — a family of Runge-Kutta methods — is used directly
using a function in Python software as a numerical approach. Furthermore, the
data used is simulated data intended solely for visualization, where the
visualization will demonstrate the behavior of the mathematical model being
studied.
2.1 Multiple-Scales Expansions

In oscillatory problems with small perturbation, the solution oscillates on
the time scale O(1) and experiences slow variations on the time scale O G) S0

that the variables t, = t and t, = €%t are introduced to accommodate both time
scales. These two time scales will be treated as independent regarding to Mark H.
Holmes (2013), resulting in a consequence on the original time derivative

transforming as follows

d _dty 0 , dt; 0 ] a« 0
_—— —— — — T e —_—
dt dt dty  dt dt; 9t € oty (1)
o . . . ] ]
To simplify the notation, we will use the symbols D, and D, in place FYe and FYe
0 1

respectively.
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2.2 Runge-Kutta Methods
This method attains accuracy comparable to the Taylor series approach
while avoiding the need to compute higher-order derivatives. Regarding to Chapra
and Canale (2015), the generalized form of the formula of this method is
Xiy1 = x; + d(t;, x5 MR (2)
where x;, x;,1, and h are the new value, old value, and distance, respectively. The
function of ¢(t;, x;, h) is called the increment function, which can be interpreted

as a representative slope over the interval, and can be written in the general form

as
¢ =ciky + c3ky + -+ ik, 2
where the ¢’s are constants and the k’s are
ky = f (s x;) (32)
ko = f(t; + p1h, x; + q11ke D) (3b)
ks = f(t; + p2h, x; + q21k1h + 22k, ) (3¢)
k, = f(ti + Dn-1h, x; + ?;11 Q(n—1)jkjh) (3d)

where the p’s and the g’ are constants.

The higher the order of the Runge-Kutta, the higher the accuracy. We use
the algorithm of “RK45” in Python, which implements the Dormand-Prince
scheme. This is a Runge-Kutta method that uses both 4th and 5th order

approximations.

3. RESULTS AND DISCUSSIONS
Let the oscillation model with an external force F(t) given by
i+ w?u=ce(—put—kun) + F(t),u >0,k #0,0 < e K 1 4)
where u = u(t) denotes the spring’s position at time t. Furthermore w, y, and k
are the natural frequency, damping parameter, and the stiffness of the spring,

respectively. Suppose F(t) = AcosQt = %eim + c.c. is an external force with

frequency Q and amplitude A, where c.c. is the complex conjugate term. In this

study, we will analyze the primary resonance scenario (Q =~ w) and the secondary
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resonance case (Q # w). Both scenarios will only be discussed up to the O(¢)
because it is sufficient to approach an analytical solution and to simplify the
discussion.
3.1 Primary Resonance Scenario (Q = w)

Given a detuning parameter ¢ = O(1) which is written as Q = w + €o.
Suppose the excitation amplitude A =0(¢) as A=¢€a and a =0(1). By

applying multiple two-time scales, we can write u(t, &) = uy(Ty, Ty) +
2
Sul(To, Tl) + Wlth TTL = gnt, Whlle % = DO + €D1 and % = Dg + 2€D0D1 +

£2D? are the differential operators for multiple two-time scales. By applying both

differential operators toward u(t) in Equation (4), we will have two ODEs as

follows.
0(1): D3uy + w?uy =0 (5)
0(&): Déu; + w?uy = Dy(u — 2D; — aug)ug + %ei(TO“”Tl“) +c.c. (6)

We can see that O(1)-problem is a homogeneous linear ODE which has
solution as follows,
uo(To, Ty) = C(Ty)e' ™ + C(Ty)e o (7
By substituting Solution (7) into O(e)-problem in Equation (6), we will have a
nonhomogeneous linear ODE that can be seen below.
D2u; + w?u; = —iwkC?e?@To + (%e”l" —iw(2D,C + ,uC) eTo + c.c. (8)
As we can see that a secular term is present in Equation (8) and it should be
neglected for the solvability condition. Let C(Ty) = %ce”’ where ¢ and b are
variables with respect to T;. Then, we will have an equation with real and
imaginary parts. If both parts are zeroed, we will have
Re:cb' = —%COS(O‘TI —b) 9)
Im:c' = %sin(aT1 —b)— %c (10)
Now, denote y = ¢T; — b so that y' = ¢ — b’, thus Equation (9) and (10) can be
written as Equation (11) and (12), respectively, whereas an autonomous system.

Re:cy' = %cos(y) +co (11)
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ol =L _Hk
Im: ¢’ = — sin(y) S C (12)
Furthermore, steady state solution can be obtained while ¢’ =y’ = 0 while

(cs,7s) is asingular point that satisfies Equation (13) and (14).
ocs = = o cos(¥s) (13)

Lcg = —=sin(y,) (14)
From those two equations above, we will have a frequency of response equation.
Hence, we can obtain a function of detuning parameter o as
—_ 41 a \? 2
o=141 (E) — 2. (15)

Now, the steady state solution where C(T;) = %cse”’s, c; € C,and by = 0Ty — ¥s

can be seen in Solution (16).
us = ¢g cos(Qt —ys) + 0(¢) (16)
The simulation of this scenario is presented in Figure 1 that shows both
asymptotic and numerical solution. Figure 1a shows a fairly rapid decrease in
amplitude at t € [0,50]. In addition, the behavior of the nonlinear spring also does
not show periodic motion at this time interval. It can be seen that the movement of

the spring is quite chaotic.

1.5 1.5
—— Asymptotic —— Asymptotic

0l — | | Numeric 01 | Numeric

0.5 1 0.5 1
—-0.51 —0.5 1
—-1.01 —1.01
-1.5 : : ! . -1.5 : : : :

0 10 20 30 40 50 0 50 100 150 200 250
t t
a.t € [0,50] b. t € [0,250]

Figure 1. Visualization of primary resonance scenario with a = 1,
u=05w=1,0=10,N=w+¢e0,k =1,and e = 0.05.

It can also be seen in Figure 1b for further interval, that the oscillations of the

nonlinear spring have a smaller amplitude. The figure shows that there is a slight
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increase in amplitude caused by the primary resonance effect for t > 50. After
reaching a certain time, the spring will only move around the equilibrium point for
a very long time because the form of the solution is a periodic function, and does
not converge to the equilibrium point. Furthermore, the differences between the
two methods are available in Figure 2, where the absolute error value becomes

relatively small for longer times.

0.16

| \
L l\ h”n l“”“l AL

100 150 200 250
t

Dﬂ4||
0.00 L
0
Figure 2. Absolute error of asymptotic and numerical solution for primary
resonance scenario

3.2 Secondary Resonance Scenario (Q # w)

In this scenario, the amplitude A = O(1) so that the external force dan be
written as F(t) = %eim + c.c.. By using the same procedure as the primary
resonance scenario, we will have

0(1): D3uy + w?uy = %eimﬂ +c.c (17)

0(&): DEu; + w?uy = [(u — aug) — 2D, |Dgu,. (18)
We can see that Equation (17) can be solved directly by using the variation of
parameters’ method that presented as

Uy (To, Ty) = C(T,)e®To + Ao + ¢ c. (19)

where A = m. Now, we consider Equation (18) substituted by uy(T,, T;) in

Solution (19) in the form
DZu; + w?u, = ;2T 4 5,10 4 §,e210T0 4 §,0200 4 § el 4

56ei(ﬂ—w)To + 57ei(“"9)T0 +c.c. (20)
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where §; = —iw(2D; + w)C, &, = —iQuA, &3 = —iawC?, &, = —iaQA?,
85 = —iaCA(Q + w), §g = —iaCA(Q — w), and §; = —iaCA(w — Q). It can be
seen in Equation (20) that the secular term can be obtained from each term in the
equation. Hence, the solvability conditions are devided in several cases such as
superharmonic  resonance, subharmonic  resonance, and nonresonant.
Superharmonic and subharmonic resonance states occur when 2Q =~ @ and

Q = 2w respectively, while nonresonant state are when ( is far enough from zero,

%, or 2w. In addition, we will also discuss a state when Q =~ 0. Furthermore, the

C(T,) function will be denoted by C(T;) = %ce”’ as in the first scenario.

3.2.1 Nonresonant Case
For this case, the solvability condition gives §; = 0 so that we will have the
real and imaginary parts zeroed out into the following two equations.
Re:cb' =0 (21)

1
Im:c' = —%yc & c=cpe ' (22)

Because u = uy + guy + -++, we will obtain the solution by substituting Equation

(19) into u(T,, T;). Thus, the solution for this case is as follows.

A
u = ccos(wt + b) + mcos(ﬂt) + 0(¢) (23)
The visualization for nonresonant state is presented in the figure below.
—— Asymptotic —— Asymptotic
10l e Numeric W I 1 = Numeric
0.51 0.5 1
U g0 u® g0
—-0.51 —0.51
—-1.01
-1.01
0 10 20 30 40 50 0 50 100 150 200 250
t t
a.t € [0,50] b. t € [0,250]

Figure 3. Visualization of nonresonant case with A =1, u = 0.5, w = 1, ¢ = 10,
N=5k=1,and ¢ = 0.05.
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Figure 3 corresponds to the physical behavior of a spring that does not
experience resonance in its oscillations, where the decrease in amplitude of the
spring is relatively smooth and consistent. This kind of behavior continues for a
longer time, as presented in Figure 3b. The parameters that work in this state are
only the damping parameters and the spring stiffness. This is a basic comparison
for the resonance behavior that occurs, which is called the free oscillation.
Furthermore, the absolute error value for this scenario can be seen in Figure 4,

where the value is also relatively small.

0.12

0.104

0.08 4

error

0.06 1 ‘

0.04 ”H UL L l

0.02

o0 MR _uannn”H“Mliunﬂﬂm, (L b

100 150 200
t

Figure 4. Absolute error of asymptotic and numerical solution for nonresonant
scenario

3.2.2 Superharmonic Resonance Case

Let the detuning parameter being written in a formula 2Q = w + €0. The
solvability condition gives §; + 6, = 0 so that by the same analogy as the
nonresonant state and by denoting y = oT; — b, we will have the real and

imaginary parts zeroed out into the following two equations.

2
cy' = %sin(y) + oc (24)
2
¢ = —%cos(y) — i,uc (25)
Since 2Q = w + g0 and u = uy + guy + -++, we will obtain
A
u =ccos(2Qt —y) + o cos(Qt) + 0(¢) (26)

The visualization for superharmonic resonant state is presented in Figure 5.

Superharmonic resonance has a significant impact on the oscillatory behavior of
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nonlinear springs, because the natural frequency is greater than the excitation one.
It can be seen in Figure 5a that the resulting amplitude is greater than the initial
amplitude given. In addition, the resulting oscillatory motion is also not smooth,
even more significantly than in the primary resonance scenario. This is because
the energy from external forces is more efficiently absorbed by the system, so the
system is at risk of instability when applied to real structures.

—— Asymptotic —— Free Oscillation
3+ e Numeric 34 —— Asymptotic
----- Numeric

0 10 20 30 40 50 0 50 100 150 200 250
t t

a.t € [0,50] b. t € [0,250]
Figure 5. Visualization of superharmonic case with A =1, u = 0.5, w = 1,

=100 = “’*;", k=1,and e = 0.01.

Further, the amplitude of the oscillation of the spring is decreasing very slowly as
time goes by, as presented in Figure 5b. It can be seen in Figure 5b that the
amplitude due to superharmonic resonance is much larger than the free oscillation
curve. We can see a chaotic behavior. We can also see the chaotic behavior
throughout the time interval clearly. In addition, the absolute error value for
superharmonic resonance scenario can be seen in Figure 6, where the value is

fluctuating and relatively small.
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Figure 6. Absolute error of asymptotic and numerical solution for superharmonic
resonance scenario.

3.2.3 Subharmonic Resonance Case

In this case, the detuning parameter being written in a formula Q = 2w +
€o. The solvability condition gives §; + 6 = 0 so that by the same analogy as
before, we will also have the real and imaginary parts zeroed out into the

following two equations.
Re:y' =ad+ Z—A (Q — w) sin(y) (27)
Im:c’ = —%uc - CO(:—A (Q — w) cos(y) (28)
Because of Q = 2w + €0 and u = uy + euy + -+, we will obtain
1 A
U = ccos (5 Qt - y)) + mcos(ﬂt) + 0(¢) (29)

The visualization for subharmonic resonant state is presented in Figure 7.
We can not tell much when we look at Figure 7a, which visualizes the solution of
a nonlinear spring under the influence of subharmonic resonance in the time
interval t € [0,50], because we do not yet see any specific behavior there.
However, things will be different if we look at Figure 7b, which has longer time

interval.
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Figure 7. Visualization of subharmonic case with A =1, u = 0.5, w = 1,0 =
10,2 =2w + €0,k =1,and € = 0.01.

We know that the natural frequency is smaller than the excitation one, thus the

oscillation can be forced. Eventhough the resulting amplitude is greater than the

initial amplitude given, the oscillatory motion is relatively smooth as shown in

Figure 7b. It shows that the nature of forced oscillation is still relatively

controlled. Furthermore, we can see that the amplitude of the oscillation of the

spring is also decreasing slowly in a certain pattern as the time goes by. In

addition, the absolute error value for subharmonic resonance scenario can be seen

in Figure 8, where the value is still fluctuating and relatively small.

0.20

0.00 U e el

50

100

150
t
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Figure 8. Absolute error of asymptotic and numerical solution for subharmonic

resonance scenario.
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3.2.4 A Certain Case Where Q = 0

In this final case, the frequency of the external force is close to zero so that
the detuning parameter being written in a formula Q = eo. The solvability
condition gives &; + &5 + 6, = 0 so that by the same analogy as before, we will
have the b and ¢ from the real and imaginary parts zeroed out into the following

two equations.
QaA
Re:b = Ecos(aTl) (30)

al .
Im:c = Coe—w(%T1+?sm(aT1)) (31)

Because of ) = ¢o and u = uy + euy + -+, we will obtain
u = ccos(wt+p) + ﬁcos(ﬂt) + 0(¢) (32)
The visualization for superharmonic resonant state is presented in Figure 9,
which shows the oscillatory motion of a nonlinear spring when the frequency of
the external force is zero. We can see in Figure 9a that the amplitude of the

nonlinear spring motion fluctuates in a certain pattern.

—— Asymptotic —— Free Oscillation
250 Numeric 2.501 —— Asymptotic

----- Numeric

1251 1.254]

u(t) u(t)

0.00 - 0.00 {1}

—1.25 —1.25 1

—2.50 ; y y ; -2.50 T T T T
0 10 20 30 40 50 0 50 100 150 200 250

t t
a.t € [0,50] b. t € [0,250]

Figure 9. Visualization of a certain case where 2 = ea with A = 1, u = 0.5,
w=1,0=10,k =1,and € = 0.01.

The pattern referred to above can be seen clearly in Figure 9b. The chaotic
behavior of the asymptotic solution is seen to decrease as time goes by, but
remains non-smooth. The nonlinear spring continues to oscillate with a fairly

large initial amplitude but slowly decreases, so that the motion of the system tends
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to be oscillates around the equilibrium point. Further, the absolute error value for
this scenario can be seen in Figure 10.

0.6

0.5 1

0.4 1

0.3 1

error

0.2 1

0.1 1

0.0 y T T ' 1
0 50 100 150 200 250
t

Figure 10. Absolute error of asymptotic and numerical solution for 2 ~ 0.

Although the relative error produced is larger compared to other scenarios, the
value is still relatively small. This is also consistent with the results shown in
Figure 9a, which indicate that the difference between the asymptotic and
numerical solutions becomes larger starting at ¢t =~ 25. The absolute error also
increases for t > 50, but it never exceeds 0.6. This occurs because the asymptotic
and numerical solutions exhibit the same overall motion pattern, differing only in

small oscillations that develop over time.

4. CONCLUSION AND SUGGESTIONS

This study shows that the nonlinear spring oscillation behavior under
external force is greatly influenced by the relationship between the natural
frequency and the external force frequency. In the primary resonance scenario, the
oscillation amplitude increases due to resonance and then decays toward
equilibrium. In the secondary resonance scenario, different cases such as
nonresonant, superharmonic, subharmonic, and a special case produce different
oscillation patterns, but overall, the amplitude tends to decrease over time. In
addition, the solution curves produced by the numerical method are quite close to
the solution results of the multiple time scale method, except for the special case

where the excitation frequency is close to zero.
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Future research could examine the model by linking it to practical
applications and experimental validation for more robust results, as well as using
other numerical methods for comparison. Then, a discussion regarding the
dynamic analysis of each type of resonance that occurs in the model can also be
carried out. In addition, the use of Lindstedt-Poincaré method on nonlinear spring
models can also be considered as a variation of the asymptotic analytical method

to observe the behavior of the model.
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