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ABSTRACT. A nonlinear spring is a type of oscillator that does not follow Hooke's law 

perfectly. In mathematics, this type of oscillator can be modeled in a nonlinear ordinary 

differential equation. Of the many discussions on oscillation models, one examines the 

behavior of the model when disturbed by a parameter with a very small value. In this 

study, a discussion will be conducted regarding the behavior of the oscillation model with 

external forces added to the disturbance parameters in the damping and spring stiffness 

terms. To observe this behavior, one of the techniques in asymptotic analysis called the 

multiple time scales method is used. The results of this study will show the behavior of the 

oscillation model with the disturbance parameters caused by the resonance that occurs. 

To provide a clearer picture, the oscillations that occur are presented in the form of a 

simulation result graph, containing a comparison between the approximate solution and 

the numerical solution. Based on the discussion given, it is concluded that the oscillations 

in the model are strongly influenced by a certain relationship between the natural 

frequency of the nonlinear spring and the frequency of the external force acting on the 

model. 

Keywords: asymptotic analysis, multiple time scales, oscillation model, nonlinear spring, 

resonance. 

 

ABSTRAK. Suatu pegas tak linier merupakan salah satu jenis osilator yang tidak 

mengikuti hukum Hooke secara sempurna. Dalam matematika, osilator jenis ini dapat 

dimodelkan dalam suatu persamaan diferensial biasa tak linier. Dari banyak diskusi yang 

membahas model osilasi, salah satunya mengkaji perilaku dari model ketika diganggu 

oleh suatu parameter yang bernilai sangat kecil. Pada penelitian ini akan dilakukan 

pembahasan mengenai perilaku dari model osilasi dengan gaya luar yang ditambahkan 

parameter gangguan pada suku redaman dan kekakuan pegas. Untuk melihat perilaku 

tersebut, digunakan salah satu teknik dalam analisis asimtotik yang disebut metode 

multiple time scales. Hasil dari penelitian ini akan menunjukkan perilaku dari model 

osilasi dengan parameter gangguan yang diakibatkan oleh resonansi yang terjadi. Guna 
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memberikan gambaran yang lebih jelas, osilasi yang terjadi disajikan dalam bentuk grafik 

hasil simulasi, memuat perbandingan antara solusi hampiran dan solusi numerik. 

Berdasarkan pembahasan yang diberikan, disimpulkan bahwa osilasi pada model sangat 

dipengaruhi oleh hubungan tertentu antara frekuensi alami pegas tak linier dengan 

frekuensi gaya luar yang bekerja pada model. 

Kata Kunci: Analisis asimtotik, multiple time scales, model osilasi, pegas tak linier, 

resonansi. 

 

1. INTRODUCTION 

The integration of human social life with technology has brought the world 

into the era of society 5.0. The existence of technology today helps make modern 

human life easier, and has resulted in an increase in human needs for materials to 

support this technology (Kariarta, 2020). Of the many types of technology, some 

require oscillators with damping so that the system can work properly and reduce 

risks in its use. In physics, an oscillator is a periodic motion system that passes 

through an equilibrium point for a certain period of time (Kusumadjati, et al., 

2017). The oscillator itself is one of the important things in engineering that 

continues to be studied in depth. One type of oscillator is a spring, which is often 

associated with Hooke's law. It does not apply perfectly to nonlinear springs, 

because the approximation to Hooke's law is linear. Due to its nonlinearity, 

nonlinear spring models cannot be solved explicitly. In mathematics, these models 

are given as nonlinear ordinary differential equations. 

Several studies that discuss nonlinear spring models are often associated 

with the Duffing equation. For example, research conducted by Illahi et al. (2024) 

investigated the solution of the Duffing equation using exponential time 

differencing method and showed its effectiveness for strongly nonlinear 

differential equations. There is also Guang-Qing Feng (2021) who discussed the 

approximate frequency of a fractal oscillator in the undamped duffing equation, 

using the two-scale transform method and the fractal frequency formula. In 

addition, there is research conducted by Tarini K. Dutta and Pramila K. Prajapati 

(2016) which discussed the dynamic properties of the nonlinear duffing equation 

with damping terms and external forces. The study showed that the model 

behaves in a periodic and chaotic behavior even though it is given a perturbation 
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in the form of a linear term. 

Another research on the Duffing equation has also been conducted by 

Gusrian Putra et al. (2023) who discussed the solution of the homogeneous 

Duffing oscillator equation using the multiple scales method, which is included in 

the asymptotic solution method. In the same study, Gusrian Putra et al. (2023) 

showed the existence of limit cycles in the dynamics of the duffing equation used. 

The same method was also used by Eric Harjanto et al. (2021) in studying the 

resonance of a weak nonlinear microbeam caused by electric actuation in two 

parts. The first part of the paper provides accurate approximations of the natural 

frequencies as well as the superharmonic and subharmonic resonance frequencies 

of the actuated microbeam up to order   , while the second part considers a 

viscous damping term of order   and structural damping and nonlinar elastic 

forces of order   . 

Furthermore, another study that apply the multiple time scale method has 

also been carried out on a certain model, such as that carried out by Nikenasih et 

al. (2024) who presented a new approach to applying this method to delay 

differential equations. The paper shows that the infinitely many roots of the 

characteristic equation of the delay differential equations can be taken into 

account, and the initial condition over the time interval determined by the delay 

can be satisfied. Besides that,  

In this study, the equation studied is included in the nonhomogeneous and 

nonlinear ordinary differential equations. Using the multiple time scales method, 

we will discuss the asymptotic analysis of the nonlinear oscillation equation, 

where the equation is given a very small perturbation on the damping term and the 

nonlinear term. In contrast to Tarini K. Dutta and Pramila K. Prajapati (2016) 

which only considered the dynamical behavior of the forced spring equation, the 

study in this research focuses on the behavior of springs resulting from the 

relationship between the natural frequency and the frequency of the excitation 

force. This study also investigates superharmonic and subharmonic resonance, 

similar to the work conducted by Eric Harjanto et al. (2021). However, the 

analysis is limited to the order of  , with a relatively brief discussion that is 
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nonetheless sufficient to provide an overview of the model’s behavior. 

Furthermore, the simulation will present a comparison between two curves, each 

of which is generated by the asymptotic solution and also the numerical solution 

resulting from the Runge-Kutta method available in Python software. The 

differences between the two simulations performed will also be visualized in the 

absolute error graph. Thus, this study contributes to a clearer understanding of the 

effects of resonance on the behavior of nonlinear springs under small 

perturbations. 

 

2. METHODS 

This research was conducted by reviewing the literature on previous studies. 

Several things related to the methods used will be discussed in this section. 

Multiple time scales method is used as an asymptotic analytical method, while the 

Dormand-Prince scheme – a family of Runge-Kutta methods – is used directly 

using a function in Python software as a numerical approach. Furthermore, the 

data used is simulated data intended solely for visualization, where the 

visualization will demonstrate the behavior of the mathematical model being 

studied. 

2.1  Multiple-Scales Expansions 

In oscillatory problems with small perturbation, the solution oscillates on 

the time scale  ( ) and experiences slow variations on the time scale  (
 

 
), so 

that the variables      and        are introduced to accommodate both time 

scales. These two time scales will be treated as independent regarding to Mark H. 

Holmes (2013), resulting in a consequence on the original time derivative 

transforming as follows 

 

  
 

   

  

 

   
 

   

  

 

   
 

 

   
    

   
      (1) 

To simplify the notation, we will use the symbols    and    in place 
 

   
 and 

 

   
, 

respectively. 
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2.2  Runge-Kutta Methods 

This method attains accuracy comparable to the Taylor series approach 

while avoiding the need to compute higher-order derivatives. Regarding to Chapra 

and Canale (2015), the generalized form of the formula of this method is 

         (       )     (2) 

where   ,     , and   are the new value, old value, and distance, respectively. The 

function of  (       ) is called the increment function, which can be interpreted 

as a representative slope over the interval, and can be written in the general form 

as 

                      (2) 

where the  ’s are constants and the  ’s are 

    (     )       (3a) 

    (                )    (3b) 

    (                       )   (3c) 

          

    (            ∑  (   )    
   
   )   (3d) 

where the  ’s and the  ’ are constants. 

The higher the order of the Runge-Kutta, the higher the accuracy. We use 

the algorithm of “RK45” in Python, which implements the Dormand-Prince 

scheme. This is a Runge-Kutta method that uses both 4th and 5th order 

approximations. 

 

3. RESULTS AND DISCUSSIONS 

Let the oscillation model with an external force  ( ) given by 

 ̈       (   ̇     ̇)   ( )               (4) 

where    ( ) denotes the spring’s position at time  . Furthermore     , and   

are the natural frequency, damping parameter, and the stiffness of the spring, 

respectively. Suppose  ( )         
 

 
          is an external force with 

frequency   and amplitude  , where      is the complex conjugate term. In this 

study, we will analyze the primary resonance scenario (   ) and the secondary 
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resonance case (   ). Both scenarios will only be discussed up to the  ( ) 

because it is sufficient to approach an analytical solution and to simplify the 

discussion. 

3.1  Primary Resonance Scenario (   ) 

Given a detuning parameter    ( ) which is written as       . 

Suppose the excitation amplitude    ( ) as      and    ( ). By 

applying multiple two-time scales, we can write  (   )    (     )  

   (     )    with       , while 
 

  
        and 

  

      
         

    
  are the differential operators for multiple two-time scales. By applying both 

differential operators toward  ( ) in Equation (4), we will have two ODEs as 

follows. 

 ( )   
                 (5) 

 ( )   
           (         )   

 

 
  (       )       (6) 

We can see that  ( )-problem is a homogeneous linear ODE which has 

solution as follows, 

  (     )   (  ) 
      ̅(  ) 

         (7) 

By substituting Solution (7) into  ( )-problem in Equation (6), we will have a 

nonhomogeneous linear ODE that can be seen below.  

  
                      (

 

 
        (       )              (8) 

As we can see that a secular term is present in Equation (8) and it should be 

neglected for the solvability condition. Let  (  )  
 

 
     where   and   are 

variables with respect to   . Then, we will have an equation with real and 

imaginary parts. If both parts are zeroed, we will have 

         
 

  
   (     )    (9) 

       
 

  
   (     )  

 

 
    (10) 

Now, denote         so that        , thus Equation (9) and (10) can be 

written as Equation (11) and (12), respectively, whereas an autonomous system. 

        
 

  
   ( )        (11) 
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   ( )  

 

 
     (12) 

Furthermore, steady state solution can be obtained while         while 

(     ) is a singular point that satisfies Equation (13) and (14). 

     
 

  
   (  )    (13) 

 

 
   

 

  
   (  )    (14) 

From those two equations above, we will have a frequency of response equation. 

Hence, we can obtain a function of detuning parameter   as 

   
 

 
√(

 

   
)
 

   .   (15) 

Now, the steady state solution where  (  )  
 

 
   

   ,     , and           

can be seen in Solution (16). 

        (     )   ( )    (16) 

The simulation of this scenario is presented in Figure 1 that shows both 

asymptotic and numerical solution. Figure 1a shows a fairly rapid decrease in 

amplitude at   [    ]. In addition, the behavior of the nonlinear spring also does 

not show periodic motion at this time interval. It can be seen that the movement of 

the spring is quite chaotic. 

  

a.   [    ] b.   [     ] 

Figure 1. Visualization of primary resonance scenario with    , 

     ,    ,     ,       ,    , and       . 

It can also be seen in Figure 1b for further interval, that the oscillations of the 

nonlinear spring have a smaller amplitude. The figure shows that there is a slight 
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increase in amplitude caused by the primary resonance effect for     . After 

reaching a certain time, the spring will only move around the equilibrium point for 

a very long time because the form of the solution is a periodic function, and does 

not converge to the equilibrium point. Furthermore, the differences between the 

two methods are available in Figure 2, where the absolute error value becomes 

relatively small for longer times. 

 

Figure 2. Absolute error of asymptotic and numerical solution for primary 

resonance scenario 

3.2  Secondary Resonance Scenario (   ) 

In this scenario, the amplitude    ( ) so that the external force dan be 

written as  ( )  
 

 
         . By using the same procedure as the primary 

resonance scenario, we will have 

 ( )   
         

 

 
             (17) 

 ( )   
         [(     )     ]       (18) 

We can see that Equation (17) can be solved directly by using the variation of 

parameters’ method that presented as 

  (     )   (  ) 
                   (19) 

where   
 

 (     )
. Now, we consider Equation (18) substituted by   (     ) in 

Solution (19) in the form 

  
            

        
        

         
         

 (   )   

   
 (   )      

 (   )        (20) 
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where       (     ) ,         ,          ,          , 

       ̅ (   ),        ̅ (   ), and         (   ). It can be 

seen in Equation (20) that the secular term can be obtained from each term in the 

equation. Hence, the solvability conditions are devided in several cases such as 

superharmonic resonance, subharmonic resonance, and nonresonant. 

Superharmonic and subharmonic resonance states occur when      and 

     respectively, while nonresonant state are when   is far enough from zero, 

 

 
, or   . In addition, we will also discuss a state when    . Furthermore, the 

 (  ) function will be denoted by  (  )  
 

 
     as in the first scenario. 

3.2.1 Nonresonant Case 

For this case, the solvability condition gives      so that we will have the 

real and imaginary parts zeroed out into the following two equations. 

               (21) 

       
 

 
        

 
 

 
      (22) 

Because           , we will obtain the solution by substituting Equation 

(19) into  (     ). Thus, the solution for this case is as follows. 

      (    )  
 

        (  )   ( )  (23) 

The visualization for nonresonant state is presented in the figure below. 

  

a.   [    ] b.   [     ] 

Figure 3. Visualization of nonresonant case with    ,      ,    ,     , 

   ,    , and       . 
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Figure 3 corresponds to the physical behavior of a spring that does not 

experience resonance in its oscillations, where the decrease in amplitude of the 

spring is relatively smooth and consistent. This kind of behavior continues for a 

longer time, as presented in Figure 3b. The parameters that work in this state are 

only the damping parameters and the spring stiffness. This is a basic comparison 

for the resonance behavior that occurs, which is called the free oscillation. 

Furthermore, the absolute error value for this scenario can be seen in Figure 4, 

where the value is also relatively small. 

 

Figure 4. Absolute error of asymptotic and numerical solution for nonresonant 

scenario 

3.2.2  Superharmonic Resonance Case 

Let the detuning parameter being written in a formula        . The 

solvability condition gives         so that by the same analogy as the 

nonresonant state and by denoting        , we will have the real and 

imaginary parts zeroed out into the following two equations. 

    
    

 
   ( )       (24) 

    
    

 
   ( )  

 

 
     (25) 

Since         and           , we will obtain 

      (     )  
 

        (  )   ( )  (26) 

The visualization for superharmonic resonant state is presented in Figure 5. 

Superharmonic resonance has a significant impact on the oscillatory behavior of 
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nonlinear springs, because the natural frequency is greater than the excitation one. 

It can be seen in Figure 5a that the resulting amplitude is greater than the initial 

amplitude given. In addition, the resulting oscillatory motion is also not smooth, 

even more significantly than in the primary resonance scenario. This is because 

the energy from external forces is more efficiently absorbed by the system, so the 

system is at risk of instability when applied to real structures. 

  

a.   [    ] b.   [     ] 

Figure 5. Visualization of superharmonic case with    ,      ,    , 

    ,   
    

 
,    , and       . 

Further, the amplitude of the oscillation of the spring is decreasing very slowly as 

time goes by, as presented in Figure 5b. It can be seen in Figure 5b that the 

amplitude due to superharmonic resonance is much larger than the free oscillation 

curve. We can see a chaotic behavior. We can also see the chaotic behavior 

throughout the time interval clearly. In addition, the absolute error value for 

superharmonic resonance scenario can be seen in Figure 6, where the value is 

fluctuating and relatively small. 
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Figure 6. Absolute error of asymptotic and numerical solution for superharmonic 

resonance scenario. 

3.2.3  Subharmonic Resonance Case 

In this case, the detuning parameter being written in a formula      

  . The solvability condition gives         so that by the same analogy as 

before, we will also have the real and imaginary parts zeroed out into the 

following two equations. 

        
  

 
(   )    ( )   (27) 

       
 

 
    

  

 
(   )    ( )  (28) 

Because of         and           , we will obtain 

      (
 

 
(    ))  

 

     
   (  )   ( )  (29) 

The visualization for subharmonic resonant state is presented in Figure 7. 

We can not tell much when we look at Figure 7a, which visualizes the solution of 

a nonlinear spring under the influence of subharmonic resonance in the time 

interval   [    ], because we do not yet see any specific behavior there. 

However, things will be different if we look at Figure 7b, which has longer time 

interval. 
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a.   [    ] b.   [     ] 

Figure 7. Visualization of subharmonic case with    ,      ,    ,   
  ,        ,    , and       . 

We know that the natural frequency is smaller than the excitation one, thus the 

oscillation can be forced. Eventhough the resulting amplitude is greater than the 

initial amplitude given, the oscillatory motion is relatively smooth as shown in 

Figure 7b. It shows that the nature of forced oscillation is still relatively 

controlled. Furthermore, we can see that the amplitude of the oscillation of the 

spring is also decreasing slowly in a certain pattern as the time goes by. In 

addition, the absolute error value for subharmonic resonance scenario can be seen 

in Figure 8, where the value is still fluctuating and relatively small. 

 

Figure 8. Absolute error of asymptotic and numerical solution for subharmonic 

resonance scenario. 
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3.2.4  A Certain Case Where     

In this final case, the frequency of the external force is close to zero so that 

the detuning parameter being written in a formula     . The solvability 

condition gives            so that by the same analogy as before, we will 

have the   and   from the real and imaginary parts zeroed out into the following 

two equations. 

     
   

  
   (   )     (30) 

        
  (

 

 
   

  

 
   (   ))

   (31) 

Because of      and           , we will obtain 

      (    )  
 

     
   (  )   ( )  (32) 

The visualization for superharmonic resonant state is presented in Figure 9, 

which shows the oscillatory motion of a nonlinear spring when the frequency of 

the external force is zero. We can see in Figure 9a that the amplitude of the 

nonlinear spring motion fluctuates in a certain pattern. 

  

a.   [    ] b.   [     ] 

Figure 9. Visualization of a certain case where      with    ,      , 

   ,     ,    , and       . 

The pattern referred to above can be seen clearly in Figure 9b. The chaotic 

behavior of the asymptotic solution is seen to decrease as time goes by, but 

remains non-smooth. The nonlinear spring continues to oscillate with a fairly 

large initial amplitude but slowly decreases, so that the motion of the system tends 
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to be oscillates around the equilibrium point. Further, the absolute error value for 

this scenario can be seen in Figure 10. 

 

Figure 10. Absolute error of asymptotic and numerical solution for    . 

Although the relative error produced is larger compared to other scenarios, the 

value is still relatively small. This is also consistent with the results shown in 

Figure 9a, which indicate that the difference between the asymptotic and 

numerical solutions becomes larger starting at     . The absolute error also 

increases for     , but it never exceeds 0.6. This occurs because the asymptotic 

and numerical solutions exhibit the same overall motion pattern, differing only in 

small oscillations that develop over time. 

 

4. CONCLUSION AND SUGGESTIONS 

This study shows that the nonlinear spring oscillation behavior under 

external force is greatly influenced by the relationship between the natural 

frequency and the external force frequency. In the primary resonance scenario, the 

oscillation amplitude increases due to resonance and then decays toward 

equilibrium. In the secondary resonance scenario, different cases such as 

nonresonant, superharmonic, subharmonic, and a special case produce different 

oscillation patterns, but overall, the amplitude tends to decrease over time. In 

addition, the solution curves produced by the numerical method are quite close to 

the solution results of the multiple time scale method, except for the special case 

where the excitation frequency is close to zero. 
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Future research could examine the model by linking it to practical 

applications and experimental validation for more robust results, as well as using 

other numerical methods for comparison. Then, a discussion regarding the 

dynamic analysis of each type of resonance that occurs in the model can also be 

carried out. In addition, the use of Lindstedt-Poincaré method on nonlinear spring 

models can also be considered as a variation of the asymptotic analytical method 

to observe the behavior of the model. 
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