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ABSTRACT. The Petri net model can be used to represent the discrete-state behavior of
traffic light signals. The Petri net model can also model three-phase traffic light
synchronization. This study aims to examine the conservation number of the three-phase
traffic light Petri net model that implements the Norwegian system. The Petri net model
must pass validation and verification tests, including boundedness, conservation
properties, coverability for all states, and simulation. The Petri net model also includes
Place Invariants, which represent the dynamic system behavior that remains constant
over time. The study results indicate that the model complies with all Place-Invariants,
meets all required properties, and the simulation is also accurate. Place-Invariants in
each phase must include a dummy. The three-phase traffic-light Petri net model with the
Norwegian system has a conservation number that holds for the model as a whole. The
conservation number is an extension of Place-Invariant that only applies partially to the
model.
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ABSTRAK. Model Petri net dapat digunakan untuk merepresentasikan struktur perilaku
state diskrit dari sinyal lampu lalu lintas. Model Petri net juga mampu menyajikan
singkronisasi penjadwalan tiga fase lampu lalu lintas. Studi ini bertujuan untuk mengkaji
bilangan konservasi pada model Petri net lampu lalu lintas tiga fase yang
mengimplementasikan sistem Norwegia. Model Petri net harus memenuhi uji validasi dan
verifikasi, diantaranya menggunakan properti keterbatasannya (boundedness), konservasi
(conservation), coverability untuk semua keadaan/ state, dan simulasi. Model Petri net
juga memiliki Place-Invariant sebagai representasi dinamika perilaku yang senantiasa
terjaga konstan sepanjang waktu. Hasil studi menyatakan bahwa model sesuai dengan
semua Place-Invariant, memenuhi semua properti yang disyaratkan, dan simulasinya juga
tepat. Place-Invariant pada masing — masing fase harus menyertakan dummy. Model Petri
net lampu lalu lintas tiga fase dengan sistem Norwegia memiliki sebuah bilangan
konservasi yang berlaku untuk model secara keseluruhan. Bilangan konservasi
merupakan pengembangan Place-Invariant yang hanya berlaku secara parsial pada model.

Kata Kunci: model Petri net, sinyal lampu lalu lintas, sistem Norwegia, place-invariant,
bilangan konservasi.

1. INTRODUCTION

Petri nets are a tool for graphically modeling a system's behavioral structure.
Petri nets can be used to model and analyze the performance of manufacturing
systems (Taiping & Peisi, 2015). It is used in a multi-channel queuing system
scheduling (Pramesthi, 2018). Petri nets can also be used to model traffic lights
(Adzkiya, 2008),(Cahyono et al., 2019),(Tristono et al., 2018).

Traffic lights regulate traffic at road junctions or intersections with multiple
arms. The scheduling interval time must be appropriate to the volume of vehicles
passing through each arm of the road. Traffic lights must ensure that the flow
from each road arm is safe and does not conflict with the movement of vehicles
from other directions. Scheduling using traffic lights must also not cause new
congestion (Tamin, 2000).

The Norwegian traffic light system is slightly different from the standard
system. The standard system's signal order is green, yellow, red, and then
returning to green as the initial state. The yellow and red signals in the Norwegian
system are lit simultaneously when the signal is ready to return to green again.
The two signals serve to reduce travel delays and also to prevent conflicts. When
the signals are red and yellow, vehicles that have been stopped for a long time can

prepare to move forward again (Tristono et al., 2023).
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The Norwegian system can also be modified. The Norwegian system's red-
yellow signals are converted to a single yellow signal. In each traffic light cycle of
the modified Norwegian system, the yellow signal flashes twice: before and after
the red signal (Tristono et al., 2024). Regarding the problem of traffic light signal
control structure complexity, the Norwegian system is the highest among the
Standard and Modified Norwegian systems (Tristono et al., 2019).

This study aims to investigate the conservation number of the three-phase
traffic-light Petri net model implementing the Norwegian system. Based on the
definition, the conservation number of a Petri net can be used to test the validity
of the condition for every possible state (Cassandras, 1993). It is difficult when
the number of states to be tested is large, and impossible when the number is
infinite (Adzkiya, 2008). As methods, first, the Petri net model validation and
verification is tested using the properties. The coverable tree is constructed based
on the occurrence matrix formula and the fire transition. Next, using the
constructed invariant, the conservation number is determined. This study has
never been done before.

In this study, the phases of traffic lights have a fixed order. Over time, the
phase sequence is west, north, east, and back to west as the initial. Traffic light
phases are a sequence of signals that alternately illuminate to regulate traffic flow
from different arms of an intersection. Each phase prevents conflicts between
vehicles coming from different directions (Tamin., 2000).

The studied model employs a fixed time strategy. It is a strategy for setting
the time interval of traffic light signals based on past empirical data from the
volume of passing vehicles. Each signal lights up at a specific time interval that
remains constant throughout (Tristono et al., 2023). Traffic lights have at least
three discrete state spaces. These state spaces are represented by colors: red,
yellow, or green. These three signals light up at fixed time intervals and in a
specific order, alternating and repeating, thereby creating a repeating cycle of the
traffic light state space (Tristono et al., 2019),(Tamin., 2000).

Many previous studies have analyzed traffic light behavior using Petri nets.
The study developed a timed Petri net (TPN)-based controller to mitigate traffic
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congestion that leads to accidents. It uses adaptive traffic light sequences in real
time (Row et al., 2024). Petri Net (PN)-based approaches are used to model
deadlock formation analytically and have been applied in many traffic flow
studies. PN is used to investigate the probability and duration of deadlock
formation (Qi et al., 2022). A new hybrid Petri net model for traffic behavior at
intersections is used to investigate flow dynamics in urban networks (Vazquez et
al., 2010). Research on control and optimization methods for intersection traffic
signals based on timed colored Petri net (TCPN) (Li et al.,, 2019). A new
extension of hybrid Petri nets is presented to generalize traffic flow modeling by
accounting for state dependence on both time-deterministic and nondeterministic
external rules, such as stop signs or priority roads. Hybrid Petri nets, which
consider both discrete and continuous aspects of traffic flow dynamics, have
proven to be a powerful tool for approximating these dynamics and accurately
describing vehicle behavior (Riouali et al., 2016).

2. RESEARCH METHODS

The Petri net model validation and verification tests employed the
boundedness property, conservation, coverability for all states, and simulation.
The boundedness property is a guarantee that the number of tokens in a place does
not explode to infinity. The number of tokens in the model's places cannot exceed
a certain positive integer. The conservation property states that the marking of the
Petri net model is sustainable, that there are no dead-end states due to the absence
of enabling transitions, and that it can be repeated to return to the initial state. The
meaning of the coverability property is that all enabled transitions must be part of
the sequence of state trees; no transitions or states are missed, meaning that all
transitions and states are covered (Adzkiya, 2008). The simulation illustrates the
real-life event of a traffic light system signal sequence turning on.

The Petri net model validation and verification tests also use several Place
Invariants (Tristono et al., 2021). The invariants are used to determine structural
properties of the net regardless of a specific Petri net marking. The invariants are

reduced to the solution of systems of linear homogeneous equations in integer
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non-negative numbers (Zaitsev, 2004). A Linear Time-Invariant (LTI) system is a
dynamic system whose components remain constant over time (Safitri, 2019).
Place-Invariant is a tool for verifying and validating the correctness of a Petri net
model. Place-Invariant presents the similarity of markings across multiple places
in a Petri net model at a specific integer (Tristono et al., 2021).

After the Petri net model validation and verification tests using the property,
coverable tree is constructed based on the occurrence matrix formula and the fire
transition then the invariant is constructed, and the conservation number is found.
2.1 Petri Net

This study uses four components of a basic Petri net for modeling traffic
lights: places (P), represented as circles; transitions (T), represented as rectangles;
directed arcs; and tokens. A place (P) represents the state space that occurred. A
transition (T) can be enabled or not enabled. The enabled transition is used to
trigger an initial state and transform it into the next state according to the arc
direction. A state that occurred is indicated by the presence of a token in the
associated place (Adzkiya, 2008).

The basic Petri net model is N(P, T, A, w). The finite set of places are P =
{P1, P2, ..., Pm} and the finite set of transitions are T = {t1, t2, . . ., tn}, where
m, n are positive integers. Component A is the set of arcs that relate places to
transitions or vice versa, i.e., from transitions to places. The mathematical
representation is written as AS(PxT)U(TxP). Component w (weight) represents
the weight function of an arc. The value of w is A—{l1, 2, 3, . . . } (Adzkiya,
2008). Arc weights in the model, which have a value of one, are usually omitted

and represented by directed lines.

Phase 2 N,_\
Phase 1 Phase 3
- &

Figure 1. Three Phases of Traffic Lights and Their Flow
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Marking a Petri net place uses tokens, which can be O or 1. They
respectively mean off or on. Mathematically, it is written M(Pi) = {0, 1}, where i
=1, 2, 3,..., 12. In the three-phase Norwegian traffic light model discussed, there
are only 12 places. A place in the traffic light signal model is said to be marked or
on if a token is present there. A place for a signal will be empty if the signal in
question is not on. To draw the three-phase traffic light model of the Norwegian
system, Petri Net Simulator 2.0 was used.

2.2 Petri Net Model of Norwegian Traffic Light System with Three Phases

A junction consisting of three road segments: the west, north, and east. The
traffic light settings are as follows: Phase 1 is the schedule for traffic from the
west, Phase 2 is the schedule for traffic flow from the north, and Phase 3 is the
schedule for traffic flow from the east. The vehicle flow system is left-hand
traffic. There are no pedestrians at the road junction, so there is no need to allocate
time for it.

Figure 2 illustrates a Petri net model of the Norwegian traffic light system,
which consists of three phases. In the west arm of the traffic light model, the
signals are P1, P2, and P3, which are green, yellow, and red, respectively. In the
north arm of the traffic light model, there are signals P5, P6, and P7. Furthermore,
in the east arm of the traffic light model, there are signals P9, P10, and P11.
Places P4, P8, and P12 are intermediate places to build the signal sequence,

according to the Norwegian system.

P3 P7 P11

T8 P12

P4 P8

P10

T3
’ Tl To i

Pl
P9

Figure 2. Petri Net Model of a Three-Phase Traffic Light Using the
Norwegian System with T1 Enabled Transition.
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After a token is fired consecutively at any of the P4, P8, or P12 by
transitions T2, T5, or T8, the red signal for all three traffic lights turns red,
commonly known as an all-red signal. At the end of each traffic light phase
change, an all-red signal is always present. The purpose is to provide a brief
period for vehicles to clear the intersection (Tamin., 2000).

The T2, T5, or T8 transitions will synchronize the three traffic light phases.
It will cause the yellow signal to illuminate simultaneously with the red signal, in
phases 2, 3, and 1, respectively. Vehicles on the junction arm whose yellow signal
illuminates simultaneously with the red signal can prepare to resume their travel
after a long stop. This signal is designed to ensure safe travel and prevent traffic
conflicts (Tamin., 2000).

If there is a token at place P1, as shown in Figure 2, then the green signal for
the traffic light on the west side of the road is on. Consequently, the signals on the
other two sides of the road must be red. While places P7 and P11 each have one
token, or both are lit.

The results of the traffic light schedule simulation in Table 1 are illustrated
in Figure 3. Each green signal duration is 30 seconds in phase 1, 21 seconds in
phase 2, and 30 seconds in phase 3. The duration of one traffic light cycle is 99
seconds. This duration is determined based on empirical data on the volume of

passing vehicles and remains constant over time.

Table 1. Traffic Light Schedule

InterGreen
Ph R |
ase Green Yollow ‘ ARed ed Cycle
Second
1. 30 3 3 66 99
2. 21 3 3 75 99
3. 30 3 3 66 99
Phase 1
Phase 2
Phase 3

Figure 3. Simulation results of the Petri net model of Three-Phase Traffic
Lights with the Norwegian System.



140 T. Tristono dkk.

2.3 Incidence Matrix

A forward incidence matrix and a backward incidence matrix represent the
connectivity in a Petri net. The incidence matrix of the Petri net model is shown in
Figure 4. The matrix A is the difference between the backward incidence matrix
and the forward incidence matrix. The matrix is m x n, where m represents the
number of places and n the number of transitions. The values of m and n are non-
negative integers. The forward incidence matrix elements are the weights of the
arcs connecting transitions to places. It also means that places are the outputs of
transitions. The backward incidence matrix elements are the weights of the arcs
connecting places to transitions. It means that places are the inputs of transitions.
If there are no arcs connecting places to transitions or vice versa, then the arc

weight is assigned a value of zero (Adzkiya, 2008).

3. RESULTS AND DISCUSSION
Equation (1) is the transition matrix from T1 to T9. The matrices T1 to T9
are presented in their transposed form. The incidence matrix, A, is shown in
Figure 4. Equations (2) through (5) are formulas in the form of an incidence
matrix after firing by an enabling transition. Its implementation is by multiplying
the matrices. A transition is enabled if all its input places contain tokens greater
than the arc weight to the next destination place (Adzkiya, 2008). A transition
fires once per traffic light cycle and must not miss any :
T1=[100000000]" \
T2=[010000000]"
T3=[001000000]"
T4=[000100000]"
T5=[000010000]" > 1)
T6=[000001000]"
T7=[0000001007]"
T8=[0000000107]"
T9=[000000001]" J
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Here is the formula for the occurrence matrix :

Oiy1=0;+AT;, i=1,24,578 )
04 = 03 + AT6 (3)
0, =04+ A.Ty (4)
01 = 09 + AT3 (5)
1 T2 3 T4 5 T6 17 T8 9

[ 1 0 1 0 0 0 0 0 0o | Pt

1 1 1 0 0 0 0 1 0 P2

0 1 1 0 0 0 0 0 0 P3

1 1 0 0 0 0 0 0 0 P4

0 0 0 -1 0 1 0 0 0 P5

A= 0 1 0 1 1 1 0 0 0 P6

0 0 0 0 1 -1 0 0 0 P7

0 0 0 1 1 0 0 0 0 Ps

0 0 0 0 0 0 1 0 1 P9

0 0 0 0 1 0 1 1 -1 P10

0 0 0 0 0 0 0 1 -1 P11

o 0 0 0 0 0 1 1 0 P12

Figure 4. Incidence Matrix of the Three-phase Light Petri Net Model with
the Norwegian System

Figure 5 illustrates the sequence of occurrences in the three-phase traffic light
Petri net model that implements the Norwegian system. Nine occurrences/ events
are combined in a row into a 12 x 9 occurrence matrix. It is called the Occurrence

matrix or O.

01 02 03 04 05 06 07 08 09

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12

i
(I — I — I — R — I — I - I — -
(I — I — I — R I ]
=T R T B — I =]
[ N — I — I — R — R — T — I ]
D DD D DO D@
D o DD D OO DS
=B =T T R R I A = =]
R — R — I — T — T — R — IR — R — ]
R — T — S NS S S )

Figure 5. Occurrence Matrix of the Petri Net Traffic Light Model
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The sequence of fire transitions and their occurrences is shown in Figure 6.
The occurrences/ events start from [O1] — T1, namely with the enable transition
T1, and repeat back to [O1] — T1. All transitions in the model have fired at least
once during one traffic light cycle.

The sequence of transitions that fire and repeat themselves forms a traffic
light cycle, and there is never a deadlock. It proves the conservation property. The
Petri net for the traffic light model meets the liveness property. The number of
tokens in place does not expand and continues to grow to infinity. It means the
model also satisfies the boundedness property. Coverability for all states is also
satisfied because it forms a repeating cycle.

[01]— T1—[02]— T2 —> [03]
Phase 2
T6 —>[04]— T4—>[05]— T5— [06]

T9— [07]— T7—>[08]— T8 — [09]

Figure 6. Fire sequence of transitions and their occurences to prove the
coverability tree

Figure 7. Petri Net Model of a Traffic Light with Three Phases equipped with
time

The model with the studied fixed-time strategy can be extended to simulate

traffic lights with complex timing at each signal. An illustration is shown in

Figure 7. Attributes G1/ P1, Y1/ P2, and R1/ P3, respectively, represent the
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Green, Yellow, and Red signals in phase 1 of the traffic light. Similarly, attributes
G2/ P5, Y2/ P6, and R2/ P7 represent phase 2, and G3/ P9, Y3/ P10, and R3/ P11
represent phase 3.

The arc weight from transition T3 to P1 is 10. It is assumed that each token
has a duration of three seconds. It means that the green signal in phase 1 has an
interval of 30 seconds, as shown in Table 1. Similarly, the arc weight from
transition T6 to P4 is 7. The green signal in phase 2 has an interval of 21 seconds.
Furthermore, the green signal in phase 3 has an interval of 30 seconds because the
arc weight from transition T9 to P7 is 10.

The all-yellow and all-red signals last three seconds, so they are illustrated
with a single token. Durations do not accompany all red signals. It is because the
Petri net model is synchronized with the green signal on all road arms from the
junction. It ensures that no errors will occur in the traffic light model. All red
signals do not need to be accompanied by durations. Their time intervals are
automatically structured. It is one of the advantages of the Petri net model.

Invariant, this time, means Place-Invariant, namely a Linear Time Invariant
(LTI) system in a dynamic place marked by tokens that do not change over time
(Safitri, 2019). Invariant and simulation results are included as properties that can
be used for validation and verification to ensure a model is correct. Traffic lights
must be able to regulate traffic flow at junctions, avoid conflicts in vehicle
movement, cover all signal phases on the road arm, and allow for a return to the
initial position to create a traffic light cycle (Adzkiya, 2008).

Linear Time-Invariant (LTI) systems in the Norwegian traffic light system
are described by Invariants (1) to (9). Invariant (1) that does not change over time
applies to phase 1 traffic lights. A token may be at P1 or P2 when there is a token
at P7 and P11. The traffic light signal in phase 1 (phase west) may turn green or
yellow if the signals on the other two arms, namely the north arm and the east
arm, are both always red or M(P7)= M(P11)= 1. Invariant (1) is a guarantee that
the travel of vehicles coming from the west arm does not conflict with other
traffic coming from different road arms. Invariant (2) applies to phase 2 traffic

lights, and Invariant (3) applies to phase 3 traffic lights :
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M (P1)+ M (P2) = M (P7) = M (P11) when M(P7)=M(P11)=1 Invariant (1)
M (P5) + M (P6) = M (P3) = M (P11) when M (P3)=M (P11) =1 Invariant (2)
M (P9) + M (P10) = M (P3) =M (P7) when M (P3)=M(P7)=1 Invariant (3)

Invariant (4) describes the synchronization for the three path arms at the
junction to share the travel schedule time. M(P1) and M(P2) are the green and
yellow signal places for phase 1. M(P5) and M(P6) are the green and yellow
signal places for phase 2. M(P9) and M(P10) are the green and yellow signal
places for phase 3. The three-phase traffic light Petri net model with the
Norwegian system satisfies Invariants (1) through (4).

M (P1) + M (P2) + M (P5) + M (6) + M (9) + M (P10) =1 Invariant (4)

Figure 8. Petri Net Model of Traffic Lights with Three Phases, equipped
with the Dummy Places, namely P13, P14, and P15

Place P13 in Figure 8 is a dummy place that serves as the signal duration

counter, except during simultaneous red and yellow signals in phase 1. Similarly,
P14 and P15, respectively. Next, Invariant (5) to Invariant (7) can be constructed.
Invariant (5) applies to phase 1, Invariant (6) is used in phase 2, and Invariant (7)
is implemented in phase 3. All total Marking sums are worth 2. Invariants (5) to
(7) cannot be constructed without the dummy places, namely P13, P14, and P15.
The number of places in the model using the dummies increases by three,
while the number of transitions remains the same. Similarly, the firing sequence
of the transitions in the three-phase Petri net traffic light model with the dummy
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remains unchanged from the model without the dummy. However, there are slight
changes in the actual occurrences. The Incidence Matrix for the model using

dummy is shown in Figure 9.

Tl T2 T3 T4 TS T6 T7 T8 T9
[ 2 0 1 0 0 0 0 0 0 | p1
1 1 1 0 0 0 0 1 0 P2
0 1 1 0 0 0 0 0 0 P3
1 1 0 0 0 0 0 0 0 P4
0 0 0 1 0 1 0 0 0 Ps
Al= 0 1 0 1 1 1 0 0 0 P6
0 0 0 0 1 1 0 0 0 P7
0 0 0 1 1 0 0 0 0 P8
0 0 0 0 0 0 1 0 1 P9
0 0 0 0 1 0 1 1 1 P10
0 0 0 0 0 0 0 1 1 P11
0 0 0 0 0 0 1 1 0 P12
0 0 1 0 0 0 0 1 0 P13
0 1 0 0 0 1 0 0 0 P14
0 0 0 0 1 0 0 0 1 | P15

Figure 9. Petri Net Incidence Matrix of the Norwegian Traffic Light System
Model with the Dummy Places

M (PL)+M (P2) + M (P3)+ M (P13) =2 Invariant (5)
M (P5) +M (P6)+ M (P7)+ M (P14) =2 Invariant (6)
M (P9) + M (P10) + M (P11) + M (P15) = 2 Invariant (7)

The simulation results are shown in Figure 11. The results differ slightly from the
simulation results in Figure 3. Invariant (5), Invariant (6), and Invariant (7)
guarantee that the traffic light signals in each phase are always active.

011 012 013 014 015 016 017 018 019

P1
P2
P3
P4
P5
P6
P7
P8
Po
P10
P11
P12
P13
P14
P15

0l1=

- - R - R R N
—_ D OO O DO D S
—Fo N O R oo OoOHMRSoMRSOS
- - R - - R )
—_ D OO DSOS O
SO SO O S -DOS
D D O O DO O DO
D - oD SS-D D
- - R - R R )

Figure 10. Petri Net Traffic Light Model Event with the Dummy Places
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M(P13)=1
Phase 2 [N Giesnas .
M(P14)=1 M(P14)=1
Phase 3 [ S osceonas
M(P15)=1 M(P15)=1

Figure 11. Simulation Results of the Model Equipped with the Dummy Places

Based on the verification, the Norwegian three-phase traffic light system model
was declared valid despite the addition of the dummy places. The firing sequence
of the transitions in the three-phase Petri net model of the traffic light with the
dummy places remained unchanged. It means the model has a state space

coverability tree that can revert to the initial state to form a traffic light cycle.
2M (P) + M (P2) + M (P3) + M (P4) + 2M (P5) + M (P6) + M (P7) + M (P8) +
2M (P9) + M (P10) + M (P11) + M (P12) = 4 Invariant (8)

2M (P2) + M (P2) + 2M (P3) + M (P4) + 2M (P5) + M (P6) + 2M (P7) + M (P8) +

2M (P9) + M (P10) + 2M (P11) + M (P12) + M (P13) + M (P14) + M (P15) = 9 Invariant (9)
Invariant (8) is a conservation number on the three-phase Petri net model of the
traffic light in the original model. The conservation number value in the original
model is 4. Invariant (9) is a conservation number on the three-phase Petri net
model of the traffic light with the dummy places. The conservation number value
in the model with the dummy places is 9. Invariants (8) and (9) also provide
conservation numbers that guarantee that the three-phase Norwegian traffic light
cycle can continue sustainably. A conservation number in the three-phase Petri net
model of the modified Norwegian traffic light can be easily determined for each

phase. It did not need the dummy places (Tristono et al., 2024).

4. CONCLUSION

The study results show that the model meets all required properties, the
simulation is accurate, and obeys all Place-Invariants. Coverability tree for all
states is also satisfied because it forms a repeating cycle. Place-Invariants in each

phase must include the dummies. The three-phase Petri net model of the
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Norwegian traffic light system has a conservation number that holds for the model
as a whole. This conservation number extends Place-Invariant, which only

partially applies to the model.
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