
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) 

Vol. 17 No. 2, Desember 2025, hal. 133-150 

ISSN (Cetak) : 2085-1456; ISSN (Online) : 2550-0422 

*Corresponding Author 

Article Info: submitted 16 October 2025; revised 7 December 2025; accepted 31 December 2025. 

 

CONSERVATION NUMBERS IN THE PETRI NET MODEL OF  

THREE-PHASE TRAFFIC LIGHTS WITH THE NORWEGIAN SYSTEM 

 

Tomi Tristono
* 

Department of Informatics Management, University of Merdeka Madiun, 

Indonesia 

tomitristono@unmer-madiun.ac.id 

 

Setiyo Daru Cahyono    

Department of Civil Engineering, University of Merdeka Madiun, Indonesia 

 

Joko Triono 

Department of Informatics Management, University of Merdeka Madiun, 

Indonesia 

  

Mochamad Sidqon 

Department of Informatics Engineering, University of 17 Agustus 1945 Surabaya, 

Indonesia 

 

Seno Aji 

Department of Civil Engineering, University of Merdeka Madiun, Indonesia 

 

 Sudarno 

Department of Mechanical Engineering, University of Merdeka Madiun, 

Indonesia 

 

 Nanang Junaedi 

Department of Informatics Management, University of Merdeka Madiun, 

Indonesia 

 

ABSTRACT. The Petri net model can be used to represent the discrete-state behavior of 

traffic light signals. The Petri net model can also model three-phase traffic light 

synchronization. This study aims to examine the conservation number of the three-phase 

traffic light Petri net model that implements the Norwegian system. The Petri net model 

must pass validation and verification tests, including boundedness, conservation 

properties, coverability for all states, and simulation. The Petri net model also includes 

Place Invariants, which represent the dynamic system behavior that remains constant 

over time. The study results indicate that the model complies with all Place-Invariants, 

meets all required properties, and the simulation is also accurate. Place-Invariants in 

each phase must include a dummy. The three-phase traffic-light Petri net model with the 

Norwegian system has a conservation number that holds for the model as a whole. The 

conservation number is an extension of Place-Invariant that only applies partially to the 

model. 

Keywords: Petri net model, traffic light signals, Norwegian system, place-invariants, 

conservation number. 
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ABSTRAK. Model Petri net dapat digunakan untuk merepresentasikan struktur perilaku 

state diskrit dari sinyal lampu lalu lintas. Model Petri net juga mampu menyajikan 

singkronisasi penjadwalan tiga fase lampu lalu lintas. Studi ini bertujuan untuk mengkaji 

bilangan konservasi pada model Petri net lampu lalu lintas tiga fase yang 

mengimplementasikan sistem Norwegia. Model Petri net harus memenuhi uji validasi dan 

verifikasi, diantaranya menggunakan properti keterbatasannya (boundedness), konservasi 

(conservation), coverability untuk semua keadaan/ state, dan simulasi. Model Petri net 

juga memiliki Place-Invariant sebagai representasi dinamika perilaku yang senantiasa 

terjaga konstan sepanjang waktu. Hasil studi menyatakan bahwa model sesuai dengan 

semua Place-Invariant, memenuhi semua properti yang disyaratkan, dan simulasinya juga 

tepat. Place-Invariant pada masing – masing fase harus menyertakan dummy. Model Petri 

net lampu lalu lintas tiga fase dengan sistem Norwegia memiliki sebuah bilangan 

konservasi yang berlaku untuk model secara keseluruhan. Bilangan konservasi 

merupakan pengembangan Place-Invariant yang hanya berlaku secara parsial pada model. 

Kata Kunci: model Petri net, sinyal lampu lalu lintas, sistem Norwegia, place-invariant, 

bilangan konservasi. 

 

1. INTRODUCTION 

Petri nets are a tool for graphically modeling a system's behavioral structure. 

Petri nets can be used to model and analyze the performance of manufacturing 

systems (Taiping & Peisi, 2015). It is used in a multi-channel queuing system 

scheduling (Pramesthi, 2018). Petri nets can also be used to model traffic lights 

(Adzkiya, 2008),(Cahyono et al., 2019),(Tristono et al., 2018).  

Traffic lights regulate traffic at road junctions or intersections with multiple 

arms. The scheduling interval time must be appropriate to the volume of vehicles 

passing through each arm of the road. Traffic lights must ensure that the flow 

from each road arm is safe and does not conflict with the movement of vehicles 

from other directions. Scheduling using traffic lights must also not cause new 

congestion (Tamin, 2000). 

The Norwegian traffic light system is slightly different from the standard 

system. The standard system's signal order is green, yellow, red, and then 

returning to green as the initial state. The yellow and red signals in the Norwegian 

system are lit simultaneously when the signal is ready to return to green again. 

The two signals serve to reduce travel delays and also to prevent conflicts. When 

the signals are red and yellow, vehicles that have been stopped for a long time can 

prepare to move forward again (Tristono et al., 2023). 
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The Norwegian system can also be modified. The Norwegian system's red-

yellow signals are converted to a single yellow signal. In each traffic light cycle of 

the modified Norwegian system, the yellow signal flashes twice: before and after 

the red signal (Tristono et al., 2024). Regarding the problem of traffic light signal 

control structure complexity, the Norwegian system is the highest among the 

Standard and Modified Norwegian systems (Tristono et al., 2019). 

This study aims to investigate the conservation number of the three-phase 

traffic-light Petri net model implementing the Norwegian system. Based on the 

definition, the conservation number of a Petri net can be used to test the validity 

of the condition for every possible state (Cassandras, 1993). It is difficult when 

the number of states to be tested is large, and impossible when the number is 

infinite (Adzkiya, 2008). As methods, first, the Petri net model validation and 

verification is tested using the properties. The coverable tree is constructed based 

on the occurrence matrix formula and the fire transition. Next, using the 

constructed invariant, the conservation number is determined. This study has 

never been done before. 

In this study, the phases of traffic lights have a fixed order. Over time, the 

phase sequence is west, north, east, and back to west as the initial. Traffic light 

phases are a sequence of signals that alternately illuminate to regulate traffic flow 

from different arms of an intersection. Each phase prevents conflicts between 

vehicles coming from different directions (Tamin., 2000).  

The studied model employs a fixed time strategy. It is a strategy for setting 

the time interval of traffic light signals based on past empirical data from the 

volume of passing vehicles. Each signal lights up at a specific time interval that 

remains constant throughout (Tristono et al., 2023). Traffic lights have at least 

three discrete state spaces. These state spaces are represented by colors: red, 

yellow, or green. These three signals light up at fixed time intervals and in a 

specific order, alternating and repeating, thereby creating a repeating cycle of the 

traffic light state space (Tristono et al., 2019),(Tamin., 2000). 

Many previous studies have analyzed traffic light behavior using Petri nets. 

The study developed a timed Petri net (TPN)-based controller to mitigate traffic 



136                                                                                                               T. Tristono dkk.  

 

congestion that leads to accidents. It uses adaptive traffic light sequences in real 

time (Row et al., 2024). Petri Net (PN)-based approaches are used to model 

deadlock formation analytically and have been applied in many traffic flow 

studies. PN is used to investigate the probability and duration of deadlock 

formation (Qi et al., 2022). A new hybrid Petri net model for traffic behavior at 

intersections is used to investigate flow dynamics in urban networks (Vázquez et 

al., 2010). Research on control and optimization methods for intersection traffic 

signals based on timed colored Petri net (TCPN) (Li et al., 2019). A new 

extension of hybrid Petri nets is presented to generalize traffic flow modeling by 

accounting for state dependence on both time-deterministic and nondeterministic 

external rules, such as stop signs or priority roads. Hybrid Petri nets, which 

consider both discrete and continuous aspects of traffic flow dynamics, have 

proven to be a powerful tool for approximating these dynamics and accurately 

describing vehicle behavior (Riouali et al., 2016).  

 

2. RESEARCH METHODS 

The Petri net model validation and verification tests employed the 

boundedness property, conservation, coverability for all states, and simulation. 

The boundedness property is a guarantee that the number of tokens in a place does 

not explode to infinity. The number of tokens in the model's places cannot exceed 

a certain positive integer. The conservation property states that the marking of the 

Petri net model is sustainable, that there are no dead-end states due to the absence 

of enabling transitions, and that it can be repeated to return to the initial state. The 

meaning of the coverability property is that all enabled transitions must be part of 

the sequence of state trees; no transitions or states are missed, meaning that all 

transitions and states are covered (Adzkiya, 2008). The simulation illustrates the 

real-life event of a traffic light system signal sequence turning on. 

The Petri net model validation and verification tests also use several Place 

Invariants (Tristono et al., 2021). The invariants are used to determine structural 

properties of the net regardless of a specific Petri net marking. The invariants are 

reduced to the solution of systems of linear homogeneous equations in integer 
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non-negative numbers (Zaitsev, 2004). A Linear Time-Invariant (LTI) system is a 

dynamic system whose  components remain constant over time (Safitri, 2019). 

Place-Invariant is a tool for verifying and validating the correctness of a Petri net 

model. Place-Invariant presents the similarity of markings across multiple places 

in a Petri net model at a specific integer (Tristono et al., 2021).  

After the Petri net model validation and verification tests using the property, 

coverable tree is constructed based on the occurrence matrix formula and the fire 

transition then the invariant is constructed, and the conservation number is found.  

2.1 Petri Net  

This study uses four components of a basic Petri net for modeling traffic 

lights: places (P), represented as circles; transitions (T), represented as rectangles; 

directed arcs; and tokens. A place (P) represents the state space that occurred. A 

transition (T) can be enabled or not enabled. The enabled transition is used to 

trigger an initial state and transform it into the next state according to the arc 

direction. A state that occurred is indicated by the presence of a token in the 

associated place (Adzkiya, 2008).  

The basic Petri net model is N(P, T, A, w). The finite set of places are P = 

{P1, P2, . . . , Pm} and the finite set of transitions are T = {t1, t2, . . . , tn}, where 

m, n are positive integers. Component A is the set of arcs that relate places to 

transitions or vice versa, i.e., from transitions to places. The mathematical 

representation is written as A⊆(P×T)∪(T×P). Component w (weight) represents 

the weight function of an arc. The value of w is A→{1, 2, 3, . . . } (Adzkiya, 

2008). Arc weights in the model, which have a value of one, are usually omitted 

and represented by directed lines. 

 

Figure 1. Three Phases of Traffic Lights and Their Flow 
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Marking a Petri net place uses tokens, which can be 0 or 1. They 

respectively mean off or on. Mathematically, it is written M(Pi) = {0, 1}, where i 

= 1, 2, 3,..., 12. In the three-phase Norwegian traffic light model discussed, there 

are only 12 places. A place in the traffic light signal model is said to be marked or 

on if a token is present there. A place for a signal will be empty if the signal in 

question is not on. To draw the three-phase traffic light model of the Norwegian 

system, Petri Net Simulator 2.0 was used. 

2.2 Petri Net Model of Norwegian Traffic Light System with Three Phases  

A junction consisting of three road segments: the west, north, and east. The 

traffic light settings are as follows: Phase 1 is the schedule for traffic from the 

west, Phase 2 is the schedule for traffic flow from the north, and Phase 3 is the 

schedule for traffic flow from the east. The vehicle flow system is left-hand 

traffic. There are no pedestrians at the road junction, so there is no need to allocate 

time for it.  

Figure 2 illustrates a Petri net model of the Norwegian traffic light system, 

which consists of three phases. In the west arm of the traffic light model, the 

signals are P1, P2, and P3, which are green, yellow, and red, respectively. In the 

north arm of the traffic light model, there are signals P5, P6, and P7. Furthermore, 

in the east arm of the traffic light model, there are signals P9, P10, and P11. 

Places P4, P8, and P12 are intermediate places to build the signal sequence, 

according to the Norwegian system. 

 

Figure 2. Petri Net Model of a Three-Phase Traffic Light Using the 

Norwegian System with T1 Enabled Transition. 
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After a token is fired consecutively at any of the P4, P8, or P12 by 

transitions T2, T5, or T8, the red signal for all three traffic lights turns red, 

commonly known as an all-red signal. At the end of each traffic light phase 

change, an all-red signal is always present. The purpose is to provide a brief 

period for vehicles to clear the intersection (Tamin., 2000). 

The T2, T5, or T8 transitions will synchronize the three traffic light phases. 

It will cause the yellow signal to illuminate simultaneously with the red signal, in 

phases 2, 3, and 1, respectively. Vehicles on the junction arm whose yellow signal 

illuminates simultaneously with the red signal can prepare to resume their travel 

after a long stop. This signal is designed to ensure safe travel and prevent traffic 

conflicts (Tamin., 2000). 

If there is a token at place P1, as shown in Figure 2, then the green signal for 

the traffic light on the west side of the road is on. Consequently, the signals on the 

other two sides of the road must be red. While places P7 and P11 each have one 

token, or both are lit. 

The results of the traffic light schedule simulation in Table 1 are illustrated 

in Figure 3. Each green signal duration is 30 seconds in phase 1, 21 seconds in 

phase 2, and 30 seconds in phase 3. The duration of one traffic light cycle is 99 

seconds. This duration is determined based on empirical data on the volume of 

passing vehicles and remains constant over time.  

Table 1. Traffic Light Schedule 

Phase Green 
InterGreen 

Red Cycle 
Yellow AllRed 

Second 

1. 30 3 3 66 99 

2. 21 3 3 75 99 

3. 30 3 3 66 99 

 

 

Figure 3. Simulation results of the Petri net model of Three-Phase Traffic 

Lights with the Norwegian System. 
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2.3 Incidence Matrix  

A forward incidence matrix and a backward incidence matrix represent the 

connectivity in a Petri net. The incidence matrix of the Petri net model is shown in 

Figure 4. The matrix A is the difference between the backward incidence matrix 

and the forward incidence matrix. The matrix is m x n, where m represents the 

number of places and n the number of transitions. The values of m and n are non-

negative integers. The forward incidence matrix elements are the weights of the 

arcs connecting transitions to places. It also means that places are the outputs of 

transitions. The backward incidence matrix elements are the weights of the arcs 

connecting places to transitions. It means that places are the inputs of transitions. 

If there are no arcs connecting places to transitions or vice versa, then the arc 

weight is assigned a value of zero (Adzkiya, 2008). 

 

3. RESULTS AND DISCUSSION 

Equation (1) is the transition matrix from T1 to T9. The matrices T1 to T9 

are presented in their transposed form. The incidence matrix, A, is shown in 

Figure 4. Equations (2) through (5) are formulas in the form of an incidence 

matrix after firing by an enabling transition. Its implementation is by multiplying 

the matrices. A transition is enabled if all its input places contain tokens greater 

than the arc weight to the next destination place (Adzkiya, 2008). A transition 

fires once per traffic light cycle and must not miss any : 

T1 = [ 1 0 0 0 0 0 0 0 0 ]
T
 

T2 = [ 0 1 0 0 0 0 0 0 0 ]
T
   

T3 = [ 0 0 1 0 0 0 0 0 0 ]
T
 

T4 = [ 0 0 0 1 0 0 0 0 0 ]
T
  

T5 = [ 0 0 0 0 1 0 0 0 0 ]
T
                                                                   (1) 

T6 = [ 0 0 0 0 0 1 0 0 0 ]
T
 

T7 = [ 0 0 0 0 0 0 1 0 0 ]
T
  

T8 = [ 0 0 0 0 0 0 0 1 0 ]
T
  

T9 = [ 0 0 0 0 0 0 0 0 1 ]
T
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Here is the formula for the occurrence matrix : 

                                    (2) 

                                                    (3) 

                                                    (4) 

                                                      (5) 

 

 

Figure 4. Incidence Matrix of the Three-phase Light Petri Net Model with 

the Norwegian System 

 

Figure 5 illustrates the sequence of occurrences in the three-phase traffic light 

Petri net model that implements the Norwegian system. Nine occurrences/ events 

are combined in a row into a 12 x 9 occurrence matrix. It is called the Occurrence 

matrix or O. 

 

Figure 5. Occurrence Matrix of the Petri Net Traffic Light Model 
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The sequence of fire transitions and their occurrences is shown in Figure 6. 

The occurrences/ events start from [O1] → T1, namely with the enable transition 

T1, and repeat back to [O1] → T1. All transitions in the model have fired at least 

once during one traffic light cycle. 

The sequence of transitions that fire and repeat themselves forms a traffic 

light cycle, and there is never a deadlock. It proves the conservation property. The 

Petri net for the traffic light model meets the liveness property. The number of 

tokens in place does not expand and continues to grow to infinity. It means the 

model also satisfies the boundedness property. Coverability for all states is also 

satisfied because it forms a repeating cycle. 

 

Figure 6. Fire sequence of transitions and their occurences to prove the 

coverability tree 

 

Figure 7. Petri Net Model of a Traffic Light with Three Phases equipped with 

time 

The model with the studied fixed-time strategy can be extended to simulate 

traffic lights with complex timing at each signal. An illustration is shown in 

Figure 7. Attributes G1/ P1, Y1/ P2, and R1/ P3, respectively, represent the 
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Green, Yellow, and Red signals in phase 1 of the traffic light. Similarly, attributes 

G2/ P5, Y2/ P6, and R2/ P7 represent phase 2, and G3/ P9, Y3/ P10, and R3/ P11 

represent phase 3.             

The arc weight from transition T3 to P1 is 10. It is assumed that each token 

has a duration of three seconds. It means that the green signal in phase 1 has an 

interval of 30 seconds, as shown in Table 1. Similarly, the arc weight from 

transition T6 to P4 is 7. The green signal in phase 2 has an interval of 21 seconds. 

Furthermore, the green signal in phase 3 has an interval of 30 seconds because the 

arc weight from transition T9 to P7 is 10.  

The all-yellow and all-red signals last three seconds, so they are illustrated 

with a single token. Durations do not accompany all red signals. It is because the 

Petri net model is synchronized with the green signal on all road arms from the 

junction. It ensures that no errors will occur in the traffic light model. All red 

signals do not need to be accompanied by durations. Their time intervals are 

automatically structured. It is one of the advantages of the Petri net model. 

Invariant, this time, means Place-Invariant, namely a Linear Time Invariant 

(LTI) system in a dynamic place marked by tokens that do not change over time 

(Safitri, 2019). Invariant and simulation results are included as properties that can 

be used for validation and verification to ensure a model is correct. Traffic lights 

must be able to regulate traffic flow at junctions, avoid conflicts in vehicle 

movement, cover all signal phases on the road arm, and allow for a return to the 

initial position to create a traffic light cycle (Adzkiya, 2008).  

Linear Time-Invariant (LTI) systems in the Norwegian traffic light system 

are described by Invariants (1) to (9). Invariant (1) that does not change over time 

applies to phase 1 traffic lights. A token may be at P1 or P2 when there is a token 

at P7 and P11. The traffic light signal in phase 1 (phase west) may turn green or 

yellow if the signals on the other two arms, namely the north arm and the east 

arm, are both always red or M(P7)= M(P11)= 1. Invariant (1) is a guarantee that 

the travel of vehicles coming from the west arm does not conflict with other 

traffic coming from different road arms. Invariant (2) applies to phase 2 traffic 

lights, and Invariant (3) applies to phase 3 traffic lights : 
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1)11()7()11()7()2()1(  PMPMwhenPMPMPMPM      Invariant (1) 

1)11()3()11()3()6()5(  PMPMwhenPMPMPMPM      Invariant (2) 

1)7()3()7()3()10()9(  PMPMwhenPMPMPMPM      Invariant (3) 

Invariant (4) describes the synchronization for the three path arms at the 

junction to share the travel schedule time. M(P1) and M(P2) are the green and 

yellow signal places for phase 1. M(P5) and M(P6) are the green and yellow 

signal places for phase 2. M(P9) and M(P10) are the green and yellow signal 

places for phase 3. The three-phase traffic light Petri net model with the 

Norwegian system satisfies Invariants (1) through (4).  

1)10()9()6()5()2()1(  PMMMPMPMPM           Invariant (4) 

 

Figure 8. Petri Net Model of Traffic Lights with Three Phases, equipped 

with the Dummy Places, namely P13, P14, and P15 

Place P13 in Figure 8 is a dummy place that serves as the signal duration 

counter, except during simultaneous red and yellow signals in phase 1. Similarly, 

P14 and P15, respectively. Next, Invariant (5) to Invariant (7) can be constructed. 

Invariant (5) applies to phase 1, Invariant (6) is used in phase 2, and Invariant (7) 

is implemented in phase 3. All total Marking sums are worth 2. Invariants (5) to 

(7) cannot be constructed without the dummy places, namely P13, P14, and P15. 

The number of places in the model using the dummies increases by three, 

while the number of transitions remains the same. Similarly, the firing sequence 

of the transitions in the three-phase Petri net traffic light model with the dummy 
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remains unchanged from the model without the dummy. However, there are slight 

changes in the actual occurrences. The Incidence Matrix for the model using 

dummy is shown in Figure 9. 

 

Figure 9.  Petri Net Incidence Matrix of the Norwegian Traffic Light System 

Model with the Dummy Places 

2)13()3()2()1(  PMPMPMPM                               Invariant (5) 

2)14()7()6()5(  PMPMPMPM         Invariant (6) 

2)15()11()10()9(  PMPMPMPM      Invariant (7)  

The simulation results are shown in Figure 11. The results differ slightly from the 

simulation results in Figure 3.  Invariant (5), Invariant (6), and Invariant (7) 

guarantee that the traffic light signals in each phase are always active.  

 

Figure 10. Petri Net Traffic Light Model Event with the Dummy Places 
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Figure 11. Simulation Results of the Model Equipped with the Dummy Places 

Based on the verification, the Norwegian three-phase traffic light system model 

was declared valid despite the addition of the dummy places. The firing sequence 

of the transitions in the three-phase Petri net model of the traffic light with the 

dummy places remained unchanged. It means the model has a state space 

coverability tree that can revert to the initial state to form a traffic light cycle.  

4)12()11()10()9(2

)8()7()6()5(2)4()3()2()1(2





PMPMPMPM

PMPMPMPMPMPMPMPM

        Invariant (8) 

 

9)15()14()13()12()11(2)10()9(2

)8()7(2)6()5(2)4()3(2)2()1(2





PMPMPMPMPMPMPM

PMPMPMPMPMPMPMPM

     Invariant (9) 

Invariant (8) is a conservation number on the three-phase Petri net model of the 

traffic light in the original model. The conservation number value in the original 

model is 4. Invariant (9) is a conservation number on the three-phase Petri net 

model of the traffic light with the dummy places. The conservation number value 

in the model with the dummy places is 9. Invariants (8) and (9) also provide 

conservation numbers that guarantee that the three-phase Norwegian traffic light 

cycle can continue sustainably. A conservation number in the three-phase Petri net 

model of the modified Norwegian traffic light can be easily determined for each 

phase. It did not need the dummy places (Tristono et al., 2024).  

 

4. CONCLUSION 

The study results show that the model meets all required properties, the 

simulation is accurate, and obeys all Place-Invariants. Coverability tree for all 

states is also satisfied because it forms a repeating cycle. Place-Invariants in each 

phase must include the dummies. The three-phase Petri net model of the 
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Norwegian traffic light system has a conservation number that holds for the model 

as a whole. This conservation number extends Place-Invariant, which only 

partially applies to the model.  
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