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ABSTRACT. Monkeypox is an infectious disease whose spread is influenced by various
epidemiological factors, one of which is the incubation period. This study developed a
mathematical model of Monkeypox, SVEIR, by incorporating a time delay in the
transition from an exposed individual to an infectious individual, representing the
incubation period. Model analysis shows that the system has two equilibrium points: a
disease-free state and an endemic state. Based on the simulation results, a threshold
value (z*) is obtained, which plays a crucial role in disease control. If the incubation
period is below the threshold (z < t*), then Ry, > 1, and the disease will spread
endemically. Conversely, if the incubation period exceeds the threshold (z > t*), then
R, < 1, and the disease will disappear from the population.
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ABSTRAK. Monkeypox merupakan penyakit menular yang penyebarannya dipengaruhi
olen berbagai faktor epidemiologis, salah satunya masa inkubasi. Penelitian ini
mengembangkan model matematika SVEIR pada penyakit Monkeypox dengan
memasukkan waktu tunda pada transisi dari individu terpapar ke infeksius sebagai
representasi dari masa inkubasi. Analisis model menunjukkan bahwa sistem memiliki dua
titik ekuilibrium, yaitu bebas penyakit dan endemik. Berdasarkan hasil simulasi,
diperoleh nilai ambang batas (z*) yang berperan penting dalam pengendalian penyakit.
Jika masa inkubasi berada di bawah ambang batas (z < 7*), maka R, > 1, dan
penyakit akan menyebar secara endemik. Sebalinya, jika masa inkubasi melebihi
ambang batas (t > t*), maka R, < 1, dan penyakit akan menghilang dari
populasi.

Kata Kunci: monkeypox, model SVEIR, waktu tunda, masa inkubasi.
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1. INTRODUCTION

Monkeypox is a zoonotic disease caused by the monkeypox virus (MPXV)
of the Orthopoxvirus genus. The disease was first discovered in laboratory
monkeys in Denmark in 1958, while the first human case was reported in 1970 in
the Democratic Republic of the Congo (DRC). Since then, the disease has been
endemic in several central and west African countries, with thousands of cases
reported annually in the DRC, and several surges, including an outbreak in
Nigeria in 2017 (Zahmatyar et al., 2023). Monkeypox began to attract global
attention after a large, transnational outbreak outside Africa, particularly in
Europe, the Americas, and Asia, was discovered in May 2022. This global
outbreak marked the first massive spread outside endemic areas, leading the WHO
to declare monkeypox a Public Health Emergency of International Concern in
July 2022 (WHO, 2025). The first case of monkeypox in Indonesia was confirmed
on August 20, 2022, in a person who had recently returned from abroad. Based on
data from the Ministry of Health as of August 17, 2024, there were 88 confirmed
cases of Monkeypox in Indonesia.

Monkeypox can spread through direct contact between humans and animals
(especially primates and rodents) and can also spread between humans through
close contact (Qelina & Graharti, 2019). However, human-to-human transmission
of the virus is now more common, particularly through direct contact with the
blood, skin lesions, or bodily fluids of infected individuals, as well as through
contaminated objects. The virus can enter the body through breaks in the skin, the
respiratory tract, or mucous membranes such as the eyes, nose, and mouth
(Alakunle et al., 2020). Since the World Health Organization (WHO) declared the
disease outbreak a global health emergency in 2022, studies on the dynamics of
monkeypox transmission have progressed, particularly through mathematical
modeling (Ludji & Buan, 2022).

In mathematical modeling, the SEIR (Susceptible—Exposed—Infectious—
Recovered) model has been widely used to analyze the dynamics of infectious
disease transmission, including monkeypox. One example of the application of the
SEIR model is shown in the study by Byrne & Rodrigues (2025), who discussed
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the use of the SEIR model to study the spread of monkeypox in the United States.
As disease control strategies evolve, model expansion is needed to represent
relevant interventions, including vaccination. Several studies have modified the
SEIR model by adding a vaccination compartment to the SVEIR model (Ahaya et
al., 2020). Furthermore, other studies have shown that models with delay
differential equations can more accurately capture the dynamics of biological
systems (Dehingia et al., 2021). Delays are commonly used to represent the
incubation period or delay in disease transmission. For example, the study by Rost
& Wu (2008) developed a disease transmission model with a delay in the
incubation period and showed that the presence of a delay can cause changes in
the stability of the equilibrium point.

Based on the description above, this study will develop a SEIR model for
the spread of Monkeypox by adding a vaccination compartment and incorporating
a time delay in the transition from exposed individuals (E) to infectious
individuals (I). This time delay represents the disease incubation period, which is
the time interval between exposure to the virus and the appearance of clinical
symptoms. According to WHO (2024), the incubation period for Monkeypox
ranges from 5 to 21 days, with a median of approximately 14 days. Meanwhile, a
clinical study conducted by Adler et al (2022) on Monkeypox patients in the UK
showed that the average incubation period was approximately 12 days. Based on
this, it is important to analyze how changes in the duration of the incubation
period can affect the spread of the disease, because the time of symptom onset
significantly determines the potential for transmission to other individuals.
Furthermore, the addition of a vaccination compartment to the model also plays a
crucial role, considering that vaccines are one of the main steps in disease
prevention and control efforts. By considering these two aspects, the developed
model is expected to provide a more comprehensive picture of the dynamics of

Monkeypox spread and assist in designing more effective intervention strategies.
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2. RESULTS AND DISCUSSIONS
2.1 Mathematical Model

The model of Monkeypox spread in the human population discussed in this
study will be carried out using the SVEIR approach using time delay, where the
time delay denotes Monkeypox incubation period. The model is the development
of SEIR model by including vaccined population. For the formulation process, we
use several assumption such as the population is a closed one and every birth will
enter the susceptible population, and of course there are natural births and deaths.
Then, the vaccination is only given to susceptible individuals and is 100%
effective. For the spread of the disease, it only occurs when there is direct contact
between a susceptible individual and an infected individual, while the infected
susceptible individuals will become the exposed ones first. In this point, the
incubation period occurs when an individual changes from exposed to infected
state and explicity modeled with time delay 7. The individuals do not transmit the
disease in this period. The movement of individuals from exposed to infected state
is influenced by an exponential decay factor due to natural mortality during the
incubation period (e #*). The exponential function is used to express the
probability of an individual surviving the incubation period t. Furthermore,
infected individuals can recover and develop permanent immunity. From the
assumptions above, a compartment diagram of the SVEIR Monkeypox disease

spread model can be formed as follows.
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Figure 1. Compartment diagram of the SVEIR Monkeypox disease spread model without
time delay
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To simplify the model formulation, we will use the notation as a symbol for
the compartments and parameters presented in Table 1.

Table 1. Symbols of the compartments and parameters used

Compartments/ Explanation Conditions
Parameters
S() The number of individuals susceptible to the disease St)=0
at time ¢.
E(t) The number of individuals exposed to the disease E()=0
(yet not infectious) at time t.
1(t) The number of individuals infected to the disease at I(t)=0
time t.
V(t) The number of vaccinated individuals at time ¢. V() =0
R(t) The number of individuals recovered to the disease at | R(t) = 0
time t.
A Birth rate (individuals/time) A>0
u Natural death rate (1/time) u>0
B Infectious rate (1/(individuals x time)) B >0
) Vaccinated rate (1/time) w>0
a Transition rate (1/time) a>0
Y Recovery rate (1/time) y >0
T Incubation period (1/time) >0

Based on the assumptions and the condition of each compartment and
parameter in Table 1, the following system of delayed differential equations
(DDE) is obtained for the Monkeypox disease spread model :

ds
—=A—BSI —uS — ws

dt
dv
- wS —uv
E
EzﬁSI—/,LE—aE (D
dl
Frin ae ME(t—1)—ul —yl
dR
P =yl — uR.

2.2 Disease Free Equilibrium Point
The first equilibrium point is a condition in which there are no individuals
infected with Monkeypox disease in a population (I = 0). In this case, we will

obtain the disease free equilibrium point by solving for
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dS dV dE dI dR
dt dt dt dt dt
in System (1) where E(t — t) = E(t) for a long period of time and I = 0, that is
A wA
pto puu+w)
Since A, u, and w are positive, the disease free equilibrium point will remain.

Egp = (S",V*,E*,I",R") = ( 0,0, 0).

2.3 Basic Reproductive Number
The possibility of a disease epidemic occurring in a population in the future
can be seen by using the basic reproduction number (R,). Each infected individual
can transmit the disease to more than one susceptible individual and cause the
disease to spread rapidly in the population (endemic) when R, > 1. Whereas for
R, < 1 resulting in each infected individual is unable to produce a single new
case of infection that survives to become infectious. As a result, the number of
infected individuals will continue to decrease, and the disease will eventually
disappear from the population (disease-free state).
The value of R, can be obtained by using the method of next generation
matrix towards System (1). We can form the matrix M (new infection) and the

matrix D (transition between infectious compartments) as follows.

A
M = [O "% Y= —Ha:‘c’l” u—(i)-y]
0 0
Then the value of MD™1 is sought, namely
afhe™H* BA(L + @)
MD™" = (u+a)(u + DE+y) o

The value of R, is obtained from the spectral radius matrix MD~1, namely the

largest positive eigenvalue from matrix MD 1. Furthermore, we will have
afAe™

+a)p+w)p+y)

Ry = p(MD™1) =

2.4 Endemic Equilibrium Point
The second equilibrium point occurs when [ # 0. By using the same
procedure as in the previous discussion, we will have an endemic equilibrium

point
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Egamk = (S, V*,E*,I",R")

where
. A . wA L wto)uty)
Twroky ' TRGr Ry T e om
+ +
1*=(“ﬁ“’)(RO—1),R*=%(RO—1).

The endemic equilibrium point will exist if R, > 1.
2.5 The Stability of Equilibrium Points

The stability of the equilibrium point of System (1) is obtained by
linearizing the system around it, then continuing by finding the eigenvalues of the
characteristic equation resulting from the linearization process. The linearization
results of System (1) around the equilibrium point x = (S*,V*,E*,I*,R*) are

given as follows.

ax
yri Apx(t) + A x(t — 1) (2)
where
x(t) = (S(&), V), E@®),1(t),R(t))",
—(u+w)—pIr 0 0 —pS* 0]
) —U 0 0 0 |
Ay = pI 0 —-(u+a) BS” 0|,
0 0 0 —(u+y) © J
0 0 0 14 —U
0 0 O 0 O]
0o 0 O 0 0
A;=10 0 O 0 ol
0 0 0 e ™ OJ
L0 0 O 0 0

The characteristic equation of System (2) can be obtained by zeroing the

determinant of AI — 4, — A;e~** such that
A+ w@+w (A+p+Atpta)Atuto+pl)
—aﬁe‘”’e‘“(l+u+w)5*) =0 3

2.5.1 Stability Analysis of Disease-Free Equilibrium Point
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Theorem 1. The disease-free equilibrium point of System (1) is locally
asymptotically stable if R, < 1. On the other hand, it is unstable if R, > 1.
Proof. Based on Equation (3), the characteristic equation for the disease-free

equilibrium point can be written as follows
A+ w?*A+p+w) ((ﬂ +u+a)A+u+y)—(u+a)(u+ y)ROe"“) =0
(4)
Three eigenvalues can be obtained directly from Equation (4) as below
Mp=—u<0, A3=—(u+w)<0
Whereas the remaining eigenvalues can be obtained from Equation (5) as follows

AppLT) = A+ pu+a)A+pu+y)— (u+a)(u+y)Ree™ (5)

It will be shown that the real parts of all eigenvalues of the equation

Agp(4,0) = 0 are negative. We will have

_ —A+VAZ-4B

4,5 2

where A=2u+a+yand B=(@u+a)(u+y)(1—Ry). We know that B > 0

when R, < 1 and A is always positive. Thus, the real part of the eigenvalues 1,

and A are negative because A > VA? —4B. We can say that all eigenvalues of

Agp(4,0) = 0 have a negative real part when R, < 1.

Further, it will be shown that for any real number p and = = 0, it holds that
Agp(ip, ) # 0 or equivalently say that for any 7 >0, Agp(4,7) =0 has no
purely imaginary eigenvalues. Note again that the real parts of all eigenvalues of
the equation Agp(4,0) =0 are negative. It means that for 7 = 0, equation
Agp(4,0) = 0 does not have purely imaginary eigenvalues. Furthermore, suppose
there is 7 > 0 which satisfies R, < 1 so that equation Agp(A4,7) = 0 has purely
imaginary eigenvalues, that is A = ip where p is any real number. Substitute
A =1ip into Agp(A,T) = 0, by separating the real and imaginary parts, we will
obtain

Re:p? — C = — CRy cospt (6)
Im: Ap = — CR,sinprt @)
where C = (u + a)(u + y). From Equations (6) and (7), we can obtain
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p*+Qip*+Q,=0 (8)
where Q; = A% — 2C dan Q, = C2(1 — R,*). Suppose k = p?, we will have

—Q, * ‘/le —4Q,

2
By using mathematical calculations, we obtain Q; > 0 and Q, > 0 if R, < 1, and

k1,2 =

Q, > /le — 4Q,. Consequently, the real part of k; , is negative. Furthermore,

ki, < 0o that p? < 0 (does not satisfy). This means that there is no real number
p that satisfies Agp(ip, ) = 0. This contradicts the assumption. The assumption
must be rejected, which is true for any T > 0 which satisfy Ry < 1, Agp(1,7) =0
does not have a purely imaginary eigenvalue. Based on the two proofs above, it
can be said that if Ry < 1 then the disease-free equilibrium point of System (1) is
locally asymptotically stable.

Next, to show that the disease-free equilibrium point of System (1) is
unstable if R, > 1, the following procedure is used. Since Agp(0,7) =
(u+a)(w+y)(A— Ry), we have Agp(0,7) <0 if Ry, > 1. Furthermore,
Agp(A,T) = 0 when 1 — +o0. Since Agp(4,T) is continuous in A for every A €
R, there exist A, > 0 such that Agp(1y,7) = 0. That is, Agp(4,7) = 0 has at least
one eigenvalue whose real part is positive. Thus, if R, > 1, then the disease-free
equilibrium point of System (1) is unstable.

2.5.2 Stability Analysis of Endemic Equilibrium Point

Theorem 2. If R, > 1, endemic equilibrium point of System (1) is locally
asymptotically stable.

Proof. Based on Equation (3), the characteristic equation for the endemic
equilibrium point can be written as follows.

A+ w?[A+p+a)A+p+yY)(A+p+w+ @+ w)(Ry— 1)) —

(u+a)(p+y)e @A +u+w)]=0 9)
From Equation (9), we will have to eigenvalues
A =—pn<0,

while the remaining eigenvalues can be obtained from Equation (10) as follows
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DeamkAL D) =A+p+)A+pu+yY)(A+p+ o+ @+ w)(Ry—1)) —
H+a)+r)e ™A +pu+ w). (10)

It will be shown that the real parts of all eigenvalues of the equation
Agami (4, 0) = 0 are negative. We will have

22+ (A+B+CRy)A?+((A+ B)CRy) A+ ABC(Ry, — 1) = 0 (11)
where A=u+a, B=u+y, and C = u+ w. Using the Routh-Hurwitz
criterion, if Ry, > 1 then all eigenvalues of Agg,.(4,0) = 0 have negative real
parts.

Furthermore, we will show that for any real number p and 7 >0,
Apami(ip,T) #= 0 holds, or equivalently, that for any 7 > 0, the equation
Arpamik (4, T) = 0 has no purely imaginary eigenvalues. Note again that the real
part of all eigenvalues of Aggm,k(4,0) = 0 is negative. This means that for 7 = 0,
Apamk(4,0) = 0 has no purely imaginary eigenvalues. Furthermore, suppose
there exists T > 0 satisfying R, > 1 such that the equation Ag;,(4,7) = 0 has a
purely imaginary eigenvalue, namely, A = ip with p an arbitrary real number.
Substitute A = ip into the equation Ag,,ix(4,T) = 0, by separating the real and
imaginary parts, we will obtain

Re: L — Mp? = ABpsinpt + ABp cos pt (12)
Im: Tp — p3 = ABp cos pt — ABp sinprt. (13)
where M =A+B+CRy, T=(A+B)CRy+AB, and L = ABCR,. From
Equations (12) and (13), we can obtain
pe+ Zip*+Z,p2+7Z3=0 (14)
where Z, = M? — 2T, Z, = T? — 2LM — A?B?, dan Z; = L? — A2B%(C?. Suppose
k = p?, then Equation (14) can be written as
k3+4+Z,k?+Zk+7Z3=0 (15)
Using the Routh-Hurwitz criterion, if Ry > 1 then the roots of Equation (15) have
negative real parts. Furthermore, k.3 < 0so that p? < 0 (does not satisfy).
Thus, there is no real number p that satisfies Aggi (ip, T) = 0. This contradicts
the assumption. The assumption must be rejected, what is true is that for any

T > 0 that satisfies R, > 1, the equation Aggmx (4, T) = 0 does not have a purely
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imaginary eigenvalue. Based on the two proofs above, it can be said that if R, > 1
then the endemic equilibrium point of System (1) is locally asymptotically stable.
2.6 Model Simulation

In this section, the SVEIR monkeypox disease spread model will be
numerically analyzed using a Python program. This analysis is performed by

substituting predetermined parameter values as shown in Table 2.

Table 2. Parameter values

Parameter Value Source

A 10 Assumed for simulation purposes
B 0,007 Bragazzi et al., 2022

w 0,015 Estimated based on data

U 0,085 Estimated based on data

% 0,0476 Estimated based on data

a 0,143 Estimated based on data

Now, consider the equation R,. If R, = 1, we will have
. 1l ( afA ) (16)
T =—In .
po \pw+a)p+w)p+y)

By substituting parameter values in Table 2 into Equation (16), we obtain

" = 14,09 days. The parameter 1 has a significant influence on R, (see Figure 2).

— Rol7)

T T T T T T T
0.00 5.00 10.00 14.09 20.00 25.00 30.00
T (incubation period)

Figure 2. The effect of the time-delay parameter 7 on the basic reproduction
number (R,)



162 I. A. Saputro dkk.

Based on Figure 2, it can be observed that an increase in the time-delay parameter
T leads to a decrease in the basic reproduction number R,. Furthermore, it is found
that when T < 7° = 14.09, the value of R, > 1, indicating that monkeypox can
persist and spread within the population. Conversely, when t > t* = 14.09, the
value of R, < 1, implying that the disease will gradually die out. This result
indicates that v acts as a threshold value separating endemic and disease-free
conditions.

The simulation is divided into three cases with varying values of t
(incubation period), namely two values of 7 that are less than * and one value of
T that is more than 7*. The simulation is carried out by taking the initial values of
$(0) = 10000, V(0) = 500, E(0) = 200, 1(0) = 100, and R(0) = 100. The

simulation results presented in Figures 3 and 4.

Delay Variation (1) and Re
—— 1 =0days, Ro = 3.31
—— 1 =7 days, Ro = 1.83
—— T =15days, Ro= 0.93

Number of infected individuals (1)

0 10 20 30 40
Time (day)

Figure 3. Visualization of infected population I(t) with several T = {0, 7, 15}.
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2900 Delay Variation (1) and Ro
—— T = 0 days, Ro = 3.31
2500 - —— T =7 days, Ro = 1.83

—— 1 =15 days, Ro = 0.93

Number of infected individuals (1)

0 20 40 60 80
Time (day)

Figure 4. Visualization of infected population I(t) with several T = {0, 7, 15} for a long
period of time.

Based on the simulation results in Figure 3, it can be seen that the number of
infected individuals increases simultaneously for different values of 7 then
decreases simultaneously around the 7™ day. Furthermore, it can also be seen that
the greater the value of 7 or in this case the longer the incubation period, the lower
the peak of the Monkeypox disease outbreak. This means that the longer the
incubation period for monkeypox, the fewer individuals are infected. This
indicates that an increase in the incubation period reduces the maximum number
of infected individuals, thereby significantly influencing the transmission
dynamics of the disease. In particular, when T = 0, meaning no incubation period,
the epidemic peak is the highest, reflecting a faster and more intense disease
transmission. As t increases, the delay in progression to the infectious stage slows
down the transmission process, resulting in a reduced outbreak intensity.

Furthermore, based on the simulation results in Figure 4, it can be seen that
for the values of t =7, where R, > 1, the number of infected individuals
converges to an endemic equilibrium over a long time period, stabilizing at
approximately 11 individuals. Meanwhile, for T = 15, where R, < 1, the number
of infected individuals gradually decreases and approaches the disease-free

equilibrium, eventually tending to zero. This result is in accordance with what has
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been explained in Theorems 1 and 2 in the previous sub-chapter, namely if
Ry <1 hen for a long period of time the disease will disappear (towards a

disease-free state), while for R, > 1 then the disease will remain (endemic state).

3. CONCLUSION AND SUGGESTION

Based on the discussion above, it is obtained that the Monkeypox disease
spread model in System (1) has two equilibrium points, namely the disease-free
and endemic equilibrium points. The stability analysis of the equilibrium points
was carried out to determine the long-term dynamics of the spread of Monkeypox
disease. Based on the simulation results, a threshold value (z*) was obtained
which plays an important role in efforts to control the spread of this disease. If the
incubation period is below the threshold (z < t*), which causes R, > 1, then the
disease is expected to continue to spread in the long term. Meanwhile, if the
incubation period exceeds the threshold (tr > %), so that R, < 1, then for a long
period of time the disease will disappear from the population. These results
indicate that small changes in the incubation period can have a significant impact
on the dynamics of the spread of Monkeypox disease. Therefore, special attention
to this parameter is very important in designing interventions that can suppress the
spread of Monkeypox disease effectively.

In this study, it was assumed that vaccination against susceptible individuals
has a 100% effectiveness rate. In reality, vaccine effectiveness can vary depending
on several factors such as vaccine type, individual age, viral mutation, etc.
Therefore, in future studies, it is recommended to consider vaccine effectiveness

levels that are less than 100%, namely in the interval [0,1] in the model.
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