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ABSTRACT.  Monkeypox is an infectious disease whose spread is influenced by various 

epidemiological factors, one of which is the incubation period. This study developed a 

mathematical model of Monkeypox, SVEIR, by incorporating a time delay in the 

transition from an exposed individual to an infectious individual, representing the 

incubation period. Model analysis shows that the system has two equilibrium points: a 

disease-free state and an endemic state. Based on the simulation results, a threshold 

value (  ) is obtained, which plays a crucial role in disease control. If the incubation 

period is below the threshold (    ), then     , and the disease will spread 

endemically. Conversely, if the incubation period exceeds the threshold (    ), then 

    , and the disease will disappear from the population. 

Keywords: monkeypox, SVEIR model, time delay, incubation period. 

 
ABSTRAK.  Monkeypox merupakan penyakit menular yang penyebarannya dipengaruhi 

oleh berbagai faktor epidemiologis, salah satunya masa inkubasi. Penelitian ini 

mengembangkan model matematika SVEIR pada penyakit Monkeypox dengan 

memasukkan waktu tunda pada transisi dari individu terpapar ke infeksius sebagai 

representasi dari masa inkubasi. Analisis model menunjukkan bahwa sistem memiliki dua 

titik ekuilibrium, yaitu bebas penyakit dan endemik. Berdasarkan hasil simulasi, 

diperoleh nilai ambang batas (  ) yang berperan penting dalam pengendalian penyakit. 

Jika masa inkubasi berada di bawah ambang batas (    ), maka     , dan 

penyakit akan menyebar secara endemik. Sebalinya, jika masa inkubasi melebihi 

ambang batas (    ), maka     , dan penyakit akan menghilang dari 

populasi.  

Kata Kunci: monkeypox, model SVEIR, waktu tunda, masa inkubasi. 
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1. INTRODUCTION 

Monkeypox is a zoonotic disease caused by the monkeypox virus (MPXV) 

of the Orthopoxvirus genus. The disease was first discovered in laboratory 

monkeys in Denmark in 1958, while the first human case was reported in 1970 in 

the Democratic Republic of the Congo (DRC). Since then, the disease has been 

endemic in several central and west African countries, with thousands of cases 

reported annually in the DRC, and several surges, including an outbreak in 

Nigeria in 2017 (Zahmatyar et al., 2023). Monkeypox began to attract global 

attention after a large, transnational outbreak outside Africa, particularly in 

Europe, the Americas, and Asia, was discovered in May 2022. This global 

outbreak marked the first massive spread outside endemic areas, leading the WHO 

to declare monkeypox a Public Health Emergency of International Concern in 

July 2022 (WHO, 2025). The first case of monkeypox in Indonesia was confirmed 

on August 20, 2022, in a person who had recently returned from abroad. Based on 

data from the Ministry of Health as of August 17, 2024, there were 88 confirmed 

cases of Monkeypox in Indonesia. 

Monkeypox can spread through direct contact between humans and animals 

(especially primates and rodents) and can also spread between humans through 

close contact (Qelina & Graharti, 2019). However, human-to-human transmission 

of the virus is now more common, particularly through direct contact with the 

blood, skin lesions, or bodily fluids of infected individuals, as well as through 

contaminated objects. The virus can enter the body through breaks in the skin, the 

respiratory tract, or mucous membranes such as the eyes, nose, and mouth 

(Alakunle et al., 2020). Since the World Health Organization (WHO) declared the 

disease outbreak a global health emergency in 2022, studies on the dynamics of 

monkeypox transmission have progressed, particularly through mathematical 

modeling (Ludji & Buan, 2022). 

In mathematical modeling, the SEIR (Susceptible–Exposed–Infectious–

Recovered) model has been widely used to analyze the dynamics of infectious 

disease transmission, including monkeypox. One example of the application of the 

SEIR model is shown in the study by Byrne & Rodrigues (2025), who discussed 
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the use of the SEIR model to study the spread of monkeypox in the United States. 

As disease control strategies evolve, model expansion is needed to represent 

relevant interventions, including vaccination. Several studies have modified the 

SEIR model by adding a vaccination compartment to the SVEIR model (Ahaya et 

al., 2020). Furthermore, other studies have shown that models with delay 

differential equations can more accurately capture the dynamics of biological 

systems (Dehingia et al., 2021). Delays are commonly used to represent the 

incubation period or delay in disease transmission. For example, the study by Röst 

& Wu (2008) developed a disease transmission model with a delay in the 

incubation period and showed that the presence of a delay can cause changes in 

the stability of the equilibrium point. 

Based on the description above, this study will develop a SEIR model for 

the spread of Monkeypox by adding a vaccination compartment and incorporating 

a time delay in the transition from exposed individuals (E) to infectious 

individuals (I). This time delay represents the disease incubation period, which is 

the time interval between exposure to the virus and the appearance of clinical 

symptoms. According to WHO (2024), the incubation period for Monkeypox 

ranges from 5 to 21 days, with a median of approximately 14 days. Meanwhile, a 

clinical study conducted by Adler et al (2022) on Monkeypox patients in the UK 

showed that the average incubation period was approximately 12 days. Based on 

this, it is important to analyze how changes in the duration of the incubation 

period can affect the spread of the disease, because the time of symptom onset 

significantly determines the potential for transmission to other individuals. 

Furthermore, the addition of a vaccination compartment to the model also plays a 

crucial role, considering that vaccines are one of the main steps in disease 

prevention and control efforts. By considering these two aspects, the developed 

model is expected to provide a more comprehensive picture of the dynamics of 

Monkeypox spread and assist in designing more effective intervention strategies. 

 

 

 

 



154                                                                                                              I. A. Saputro dkk.  

 

2. RESULTS AND DISCUSSIONS 

2.1 Mathematical Model 

The model of Monkeypox spread in the human population discussed in this 

study will be carried out using the SVEIR approach using time delay, where the 

time delay denotes Monkeypox incubation period. The model is the development 

of SEIR model by including vaccined population. For the formulation process, we 

use several assumption such as the population is a closed one and every birth will 

enter the susceptible population, and of course there are natural births and deaths. 

Then, the vaccination is only given to susceptible individuals and is 100% 

effective.  For the spread of the disease, it only occurs when there is direct contact 

between a susceptible individual and an infected individual, while the infected 

susceptible individuals will become the exposed ones first. In this point, the 

incubation period occurs when an individual changes from exposed to infected 

state and explicity modeled with time delay  . The individuals do not transmit the 

disease in this period. The movement of individuals from exposed to infected state 

is influenced by an exponential decay factor due to natural mortality during the 

incubation period (    ). The exponential function is used to express the 

probability of an individual surviving the incubation period  . Furthermore, 

infected individuals can recover and develop permanent immunity. From the 

assumptions above, a compartment diagram of the SVEIR Monkeypox disease 

spread model can be formed as follows. 

 

 

 

 

 

 

 

 

Figure 1. Compartment diagram of the SVEIR Monkeypox disease spread model without 

time delay 
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To simplify the model formulation, we will use the notation as a symbol for 

the compartments and parameters presented in Table 1. 

Table 1. Symbols of the compartments and parameters used 

Compartments/ 

Parameters 

Explanation Conditions 

 ( ) The number of individuals susceptible to the disease 

at time  . 
 ( )    

 ( ) The number of individuals exposed to the disease 

(yet not infectious) at time  . 
 ( )    

 ( ) The number of individuals infected to the disease at 

time  . 
 ( )    

 ( ) The number of vaccinated individuals at time  .  ( )    

 ( ) The number of individuals recovered to the disease at 

time  . 
 ( )    

  Birth rate (individuals/time)     

  Natural death rate (1/time)     

  Infectious rate (1/(individuals   time))     

  Vaccinated rate (1/time)     

  Transition rate (1/time)     

  Recovery rate (1/time)     

  Incubation period (1/time)     

  

Based on the assumptions and the condition of each compartment and 

parameter in Table 1, the following system of delayed differential equations 

(DDE) is obtained for the Monkeypox disease spread model : 

                                             
  

  
             

                                             
  

  
       

                                             
  

  
                                                                    ( ) 

  

  
       (   )        

                                             
  

  
        

2.2 Disease Free Equilibrium Point 

 The first equilibrium point is a condition in which there are no individuals 

infected with Monkeypox disease in a population (   ). In this case, we will 

obtain the disease free equilibrium point by solving for  
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in System (1) where  (   )   ( ) for a long period of time and    , that is  

    ( 
             )  (

 

   
 

  

 (   )
      )  

Since  ,  , and   are positive, the disease free equilibrium point will remain. 

2.3 Basic Reproductive Number 

The possibility of a disease epidemic occurring in a population in the future 

can be seen by using the basic reproduction number (  ). Each infected individual 

can transmit the disease to more than one susceptible individual and cause the 

disease to spread rapidly in the population (endemic) when     . Whereas for 

     resulting in each infected individual is unable to produce a single new 

case of infection that survives to become infectious. As a result, the number of 

infected individuals will continue to decrease, and the disease will eventually 

disappear from the population (disease-free state).  

The value of    can be obtained by using the method of next generation 

matrix towards System (1). We can form the matrix   (new infection) and the 

matrix   (transition between infectious compartments) as follows. 

  [ 
  

   
  

]    [
    
         

] 

Then the value of      is sought, namely 

     [
       

(   )(   )(   )

  (   )

   
  

] 

The value of    is obtained from the spectral radius matrix     , namely the 

largest positive eigenvalue from matrix     . Furthermore, we will have 

    (  
  )  

       

(   )(   )(   )
  

2.4 Endemic Equilibrium Point 

The second equilibrium point occurs when    . By using the same 

procedure as in the previous discussion, we will have an endemic equilibrium 

point 
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      ( 
             ) 

where  

   
 

(   )  
      

  

 (   )  
      

(   )(   )

      
(    )  

   
(   )

 
(    )   

  
 (   )

  
(    )  

The endemic equilibrium point will exist if     . 

2.5 The Stability of Equilibrium Points 

The stability of the equilibrium point of System (1) is obtained by 

linearizing the system around it, then continuing by finding the eigenvalues of the 

characteristic equation resulting from the linearization process. The linearization 

results of System (1) around the equilibrium point   (              ) are 

given as follows. 

  

  
    ( )     (   )                                        ( ) 

where 

 ( )  ( ( )  ( )  ( )  ( )  ( )) , 

   

[
 
 
 
 
 (   )            

      

     (   )     

    (   )  

      ]
 
 
 
 

, 

   

[
 
 
 
 
     

     

     

         

     ]
 
 
 
 

. 

The characteristic equation of System (2) can be obtained by zeroing the 

determinant of          
     such that 

(   )(   ) .(     )(     )(         )

           (     )  /                                              ( ) 

2.5.1 Stability Analysis of Disease-Free Equilibrium Point 
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Theorem 1. The disease-free equilibrium point of System (1) is locally 

asymptotically stable if      . On the other hand, it is unstable if      . 

Proof. Based on Equation (3), the characteristic equation for the disease-free 

equilibrium point can be written as follows 

(   ) (     ) .(     )(     )  (   )(   )   
   /    

(4) 

Three eigenvalues can be obtained directly from Equation (4) as below 

                (   )    

Whereas the remaining eigenvalues can be obtained from Equation (5) as follows 

   (   )  (     )(     )  (   )(   )   
               ( ) 

It will be shown that the real parts of all eigenvalues of the equation               

   (   )    are negative. We will have 

     
   √     

 
 

where          and   (   )(   )(    ). We know that     

when      and   is always positive. Thus, the real part of the eigenvalues    

and    are negative because   √     . We can say that all eigenvalues of 

   (   )    have a negative real part when     . 

Further, it will be shown that for any real number   and    , it holds that 

   (    )    or equivalently say that for any    ,    (   )    has no 

purely imaginary eigenvalues. Note again that the real parts of all eigenvalues of 

the equation    (   )    are negative. It means that for    , equation 

   (   )    does not have purely imaginary eigenvalues. Furthermore, suppose 

there is     which satisfies      so that equation    (   )    has purely 

imaginary eigenvalues, that is      where   is any real number. Substitute 

     into    (   )   , by separating the real and imaginary parts, we will 

obtain  

                       (6) 

                      (7) 

where   (   )(   ). From Equations (6) and (7), we can obtain 
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                  (8) 

where     
     dan     

 (    
 ). Suppose     , we will have 

     
    √  

     

 
  

By using mathematical calculations, we obtain      and      if     , and 

   √  
     . Consequently, the real part of      is negative. Furthermore,  

       so that      (does not satisfy). This means that there is no real number 

  that satisfies    (    )   . This contradicts the assumption. The assumption 

must be rejected, which is true for any     which satisfy     ,    (   )    

does not have a purely imaginary eigenvalue. Based on the two proofs above, it 

can be said that if      then the disease-free equilibrium point of System (1) is 

locally asymptotically stable. 

Next, to show that the disease-free equilibrium point of System (1) is 

unstable if     , the following procedure is used. Since    (   )  

(   )(   )(     ), we have    (   )    if     . Furthermore, 

   (   )    when     . Since    (   ) is continuous in   for every   

 , there exist      such that    (    )   . That is,    (   )    has at least 

one eigenvalue whose real part is positive. Thus, if      , then the disease-free 

equilibrium point of System (1) is unstable. 

2.5.2 Stability Analysis of Endemic Equilibrium Point 

Theorem 2. If     , endemic equilibrium point of System (1) is locally 

asymptotically stable.  

Proof. Based on Equation (3), the characteristic equation for the endemic 

equilibrium point can be written as follows. 

(   ) [(     )(     )(      (   )(    ))  

         (   )(   )    (     )]                    (9) 

From Equation (9), we will have to eigenvalues 

           

while the remaining eigenvalues can be obtained from Equation (10) as follows 
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     (   )  (     )(     )(      (   )(    ))  

(   )(   )    (     ).        (10) 

It will be shown that the real parts of all eigenvalues of the equation               

     (   )    are negative. We will have 

   (       ) 
  + ((   )   )      (    )                (11) 

where      ,        , and        . Using the Routh-Hurwitz 

criterion, if      then all eigenvalues of       (   )    have negative real 

parts.  

Furthermore, we will show that for any real number   and    , 

     (    )    holds, or equivalently, that for any    , the equation 

     (   )    has no purely imaginary eigenvalues. Note again that the real 

part of all eigenvalues of      (   )    is negative. This means that for    , 

     (   )    has no purely imaginary eigenvalues. Furthermore, suppose 

there exists     satisfying      such that the equation      (   )    has a 

purely imaginary eigenvalue, namely,      with   an arbitrary real number. 

Substitute      into the equation      (   )   , by separating the real and 

imaginary parts, we will obtain  

                                          (12) 

                           .              (13) 

where          ,   (   )      , and        . From 

Equations (12) and (13), we can obtain  

      
     

                              (14) 

where     
    ,     

          , dan     
        . Suppose 

    , then Equation (14) can be written as 

      
                        (15) 

Using the Routh-Hurwitz criterion, if      then the roots of Equation (15) have 

negative real parts. Furthermore,          so that      (does not satisfy). 

Thus, there is no real number   that satisfies      (    )   . This contradicts 

the assumption. The assumption must be rejected, what is true is that for any 

    that satisfies     , the equation      (   )    does not have a purely 
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(16) 

imaginary eigenvalue. Based on the two proofs above, it can be said that if      

then the endemic equilibrium point of System (1) is locally asymptotically stable. 

2.6 Model Simulation 

In this section, the SVEIR monkeypox disease spread model will be 

numerically analyzed using a Python program. This analysis is performed by 

substituting predetermined parameter values as shown in Table 2. 

Table 2. Parameter values 

Parameter Value Source 

  10 Assumed for simulation purposes 

  0,007 Bragazzi et al., 2022 

  0,015 Estimated based on data 

  0,085 Estimated based on data 

  0,0476 Estimated based on data 

  0,143 Estimated based on data 

Now, consider the equation   . If     , we will have 

   
 

 
  (

   

(   )(   )(   )
)   

By substituting parameter values in Table 2 into Equation (16), we obtain 

         days. The parameter τ has a significant influence on    (see Figure 2). 

 

Figure 2. The effect of the time-delay parameter   on the basic reproduction            

number (  ) 
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Based on Figure 2, it can be observed that an increase in the time-delay parameter 

  leads to a decrease in the basic reproduction number   . Furthermore, it is found 

that when           , the value of     , indicating that monkeypox can 

persist and spread within the population. Conversely, when           , the 

value of     , implying that the disease will gradually die out. This result 

indicates that    acts as a threshold value separating endemic and disease-free 

conditions. 

The simulation is divided into three cases with varying values of   

(incubation period), namely two values of     that are less than    and one value of  

  that is more than   . The simulation is carried out by taking the initial values of 

 ( )       ,  ( )     ,  ( )     ,  ( )     , and  ( )     . The 

simulation results presented in Figures 3 and 4. 

 

Figure 3. Visualization of infected population  ( ) with several   *      +. 
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Figure 4. Visualization of infected population  ( ) with several   *      + for a long 

period of time. 

Based on the simulation results in Figure 3, it can be seen that the number of 

infected individuals increases simultaneously for different values of   then 

decreases simultaneously around the 7
th

 day. Furthermore, it can also be seen that 

the greater the value of   or in this case the longer the incubation period, the lower 

the peak of the Monkeypox disease outbreak. This means that the longer the 

incubation period for monkeypox, the fewer individuals are infected. This 

indicates that an increase in the incubation period reduces the maximum number 

of infected individuals, thereby significantly influencing the transmission 

dynamics of the disease. In particular, when    , meaning no incubation period, 

the epidemic peak is the highest, reflecting a faster and more intense disease 

transmission. As   increases, the delay in progression to the infectious stage slows 

down the transmission process, resulting in a reduced outbreak intensity. 

Furthermore, based on the simulation results in Figure 4, it can be seen that 

for the values of    , where     , the number of infected individuals 

converges to an endemic equilibrium over a long time period, stabilizing at 

approximately 11 individuals. Meanwhile, for     , where     , the number 

of infected individuals gradually decreases and approaches the disease-free 

equilibrium, eventually tending to zero. This result is in accordance with what has 
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been explained in Theorems 1 and 2 in the previous sub-chapter, namely if 

     hen for a long period of time the disease will disappear (towards a 

disease-free state), while for      then the disease will remain (endemic state). 

 

3. CONCLUSION AND SUGGESTION 

Based on the discussion above, it is obtained that the Monkeypox disease 

spread model in System (1) has two equilibrium points, namely the disease-free 

and endemic equilibrium points. The stability analysis of the equilibrium points 

was carried out to determine the long-term dynamics of the spread of Monkeypox 

disease. Based on the simulation results, a threshold value (  ) was obtained 

which plays an important role in efforts to control the spread of this disease. If the 

incubation period is below the threshold (    ), which causes     , then the 

disease is expected to continue to spread in the long term. Meanwhile, if the 

incubation period exceeds the threshold (    ), so that     , then for a long 

period of time the disease will disappear from the population. These results 

indicate that small changes in the incubation period can have a significant impact 

on the dynamics of the spread of Monkeypox disease. Therefore, special attention 

to this parameter is very important in designing interventions that can suppress the 

spread of Monkeypox disease effectively.  

In this study, it was assumed that vaccination against susceptible individuals 

has a 100% effectiveness rate. In reality, vaccine effectiveness can vary depending 

on several factors such as vaccine type, individual age, viral mutation, etc. 

Therefore, in future studies, it is recommended to consider vaccine effectiveness 

levels that are less than 100%, namely in the interval ,   - in the model.  
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