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ABSTRACT. The approximate solution to the Schrödinger equation of exotic doubly muonic helium-like systems has been 
obtained using a simple matrix method based on hydrogenic s-states. Each system considered consists of a positively 
charged nucleus surrounded by 2 negatively charged muons XZ+

μ
-
μ

- (2≤Z≤36). The present work aims to obtain 
approximate ground-state energies of the systems and to decompose the energies in terms of the basis states used. Here, 
the wave function was expressed as a linear combination of 15 eigenfunctions, each written as the product of two 
hydrogenic s-states. The elements of the Hamiltonian matrix were calculated and finally, the energy eigenvalue equation 
was numerically solved to obtain the ground-state energies of the systems with their corresponding eigenvectors. From the 
results, ground-state energies of all systems were in agreement with others from the literature, with percentage differences 
between 0.03% and 2.05%. The analysis of the probability amplitudes from the eigenvectors showed that the 1s1s state 
made the largest contribution to the ground state energies of the systems, approaching 90.99%, 96.98% and  98.54% for 
He2+

μ
-
μ

- , Li3+
μ

-
μ

- , and Be4+
μ

-
μ

- , respectively.  
  
Keywords: Doubly muonic helium-like systems, ground state energy, hydrogenic basis states, matrix mechanics, 
Schrödinger equation 

 
INTRODUCTION  

A large number of theoretical and computational 
studies in chemistry has been applied to study various 
quantum systems ranging from atoms to materials. 
Some of such studies included the application of 
QCMP 116 program in studying interactions of NH3 
molecule on the surface of chromium (Banon, 2010), 
Quantitative Structure-Activity Relationships (QSAR) 
analysis to obtain a design of calanone derivatives 
(Iswanto et al., 2011), Quantitative Structure-Property 
Relationships (QSPR) models (Delsy et al., 2017; 
Iswanto et al., 2019; Setiawan et al., 2020), and 
sparkle RM1 method to perform a theoretical study on 
the electronic structure and spectrum of 
[Ln(pytpy)(NO3)3] complex (Ln=Eu, Tb, pytpy=4’-(2-
pyrrolyl)-2,2’:6’,2”-terpyridine) (Setiawan & Zulys, 
2015). In addition, several recent studies using 
Density Functional Theory (DFT) were performed for 
various systems such as Cathinone imprinted polymer 
(Saputra et al., 2017), surfaces of pure and Sc-
incorporated Mg(0001) (Sutapa et al., 2010),  
nitrogen-doped diamond (Sholihun et al., 2018), and 
leuco-indigo and indigo (Maahury et al., 2020).  

Among systems studied, quantum three-body 
systems play a crucial role in theoretical quantum 

chemistry and physics as approximations proposed to 
solve the Schrödinger equation for these systems can 
be tested before being applied in studying more 
complex quantum systems. There has been a large 
number of theoretical investigations conducted for 
such systems. Some of the recent studies include the 
energy determination of the Helium atom using the 
shooting method (Hall & Siegel, 2015), Hartree-Fock 
method (Young et al., 2016), Laguerre-based 
functions (Kartono et al., 2005; Livertz & Barnea, 
2012; Livertz & Barnea, 2014; King et al., 2018; 
Baskerville & Cox, 2019), variational method 
(Purwaningsih et al., 2019) and Rayleigh-Schrödinger 
perturbation theory (Montgomery et al., 2010). 
Similar studies have also been carried out such as 
those for helium-like ions (Mccarthy & Thakkar, 
2011; Montgomery & Pupyshev, 2014; Montgomery 
et al., 2019) and positively charged molecular 
hydrogen (Pingak & Johannes, 2020).  

In addition to helium atom and he-like ions, exotic 
muonic helium-like systems have been the focus of 
recent research. Muonic atoms or ions, which are 
formed by replacing one (or more) orbital electron(s) 
with one (or more) negatively charged muon(s), are 
the most studied exotic few-body Coulomb systems 
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(Khan, 2014). They have attracted researchers in 
both theoretical chemistry and physics because their 
physical and chemical properties have not been fully 
understood. More in-depth and comprehensive 
studies on these systems using various theoretical 
approaches are expected to enrich the understanding 
of the properties of these systems from the 
fundamental levels to the application levels (Putlitz, 
1992). Furthermore, exotic three-body systems have 
become more significant in the field of physics and 
chemistry including atomic spectroscopy and 
quantum electrodynamics (Khan, 2014). Such 
systems include the muonic helium Heμ-e- which has 
been intensively investigated such as in (Bailey & 
Frolov, 2002; Eskandari & Rezaie, 2005; Frolov & 
Wardlaw, 2012; Frolov, 2012; Khan, 2016; 
Karshenboim et al., 2018; Aznabayev et al., 2018).  

In contrast to the muonic helium  Heμ-e- systems 
which are intensively studied and reported in the 
literature, only a few reports were found in the 
literature on exotic doubly muonic helium-like 
systems of the form XZ+

μ
-
μ

-, i.e. a core which is 
surrounded by two negatively charged valence 
muons. Theoretical and computational studies on the 
systems using different methods have been reported, 
including the use of boundary condition on the 
wavefunction (Eskandari & Rezaie, 2004), the 
application of an angular correlated configuration 
interaction method (Ancarani et al., 2010; Ancarani 
et al., 2011), hyperspherical harmonics (HH) 
expansion method involving the Raynal-Revai 
Coefficients (RRC) (Khan, 2012; Khan, 2014). 
Recently, the ground-state energy of the Heμ-μ- was 
also calculated using the variational approach as 
presented in (Boimau et al., 2017). The application 
of other methods in studying these systems is 
therefore important to gain a much better 
understanding of the properties of these systems.  

An alternative numerical method to solve the 
Schrödinger equation for two-electron systems was 
presented by Massé (Massé & Walker, 2015), who 
expanded the wavefunction of the helium atom in 
terms of hydrogenic basis states. Despite being 
simple and straightforward, the method yielded 
accurate low-lying state energies of the helium atom. 
The analytical solution to the Schrödinger equation 
using this method was also presented in (Pingak et 
al., 2019) and was proven accurate in obtaining 
energies of 1s2, 1s2s triplet and 1s2s singlet states. 
Besides, the extension of the method to determine the 
low-lying energies of helium-like ions was already 
performed in (Pingak & Deta, 2020; Pingak et al., 
2021). The method, however, has not been applied 
to exotic three-body systems including the doubly 
exotic muonic helium-like systems XZ+

μ
-
μ

- which should 
have similar properties to the helium atom and 
helium-like ions.     

The present study focuses on exotic doubly 
muonic helium-like systems XZ+

μ
-
μ

- (2≤Z≤36), which 

consisted of a positively charged +Ze core 
surrounded by two negatively charged valence 
muons. This work aims at obtaining an approximate 
solution to the Schrödinger equation for these 
systems using the matrix method based on 
hydrogenic s-states. From the solution, the ground 
state energies of the systems are determined with 
their corresponding energy eigenvectors. The spectral 
decomposition of the energies is also presented to 
investigate the composition of each hydrogenic basis 
state used to obtain the ground state energies of the 
systems. The comparisons to results from other 
calculations in the literature are also presented and 
discussed. The results of the present study will make a 
significant contribution to the field of doubly muonic 
systems as the majority of the systems studied here 
have not been investigated in previous studies both 
theoretically and experimentally. Moreover, this study 
demonstrates that with this method, reasonably 
accurate energies of quantum systems can be 
obtained, consistent with some recent studies using 
the matrix method on different systems, including 
anharmonic oscillators (Pingak et al., 2021) and the 
Morse oscillator (Pingak et al., 2023). 
 
EXPERIMENTAL SECTION 
Computational Details 
Wave Function Expansion 

The time-independent Schrödinger solved in this 
work is shown in equation (1). 

𝐻̂Ψ(𝒓) = 𝐸Ψ(𝒓)   (1) 

Equation (1) is an energy eigenvalue equation whose 
solutions are energy eigenvalues and eigenfunctions 
of quantum systems considered, which in this 
research is the doubly muonic helium-like systems 

XZ+
μ

-
μ

-. Here, 𝐻̂ is the Hamiltonian operator, E is the 
energy eigenvalue and Ψ(𝒓) is the wave function.  

One of the quantum mechanics postulates is that 
the wavefunction Ψ(𝒓) can be written as a linear 
combination of eigenfunctions 𝜓𝑘(𝒓) (Bransden & 
Joachain, 2000), shown in equation (2), where ck is 
the probability amplitudes. 

Ψ(𝒓)  = ∑ 𝑐𝑘𝜓𝑘(𝒓)

∞

𝑘=1

   (2) 

To solve the Schrödinger equation using the 
matrix mechanics, the wave function has to be of 
finite dimension, N. As a result, equation (2) could be 
written: 

Ψ(𝒓)  = ∑ 𝑐𝑘𝜓𝑘(𝒓)

𝑁

𝑘=1

    (3) 

Furthermore, in the matrix method applied by 
Massé (Massé & Walker, 2015), eigenfunctions 𝜓𝑘(𝒓) 
were formed by taking the product of two wave 
functions of hydrogenic ions. Within this approach, 
the correlation function was neglected in the wave 
function. Therefore,  equation (3) can be written in 
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the form presented in equation (4), where 𝜙𝑘𝑛,𝑙,𝑚𝑙
(𝒓1) 

and 𝜙𝑘𝑛,𝑙,𝑚𝑙
(𝒓2) represent hydrogenic wave function 

for muon 1 dan muon 2 in a particular |𝑛, 𝑙, 𝑚𝑙〉 
state, respectively. 

Ψ(𝒓)  = ∑ 𝑐𝑘𝜙𝑘𝑛,𝑙,𝑚𝑙
(𝒓1)𝜙𝑘𝑛,𝑙,𝑚𝑙

(𝒓2)𝑁
𝑘=1   (4) 

In this research, 15 unsymmetrized hydrogenic 
basis s-states are used which took the form of 
equation (5), adopted from (Pingak & Deta, 2020). 

Ψ(𝒓)  = ∑ 𝑐11𝜙100(𝒓1)𝜙100(𝒓2) +8
𝑛=2

𝑐1𝑛𝜙100(𝒓1)𝜙𝑛00(𝒓2) + 𝑐𝑛1𝜙𝑛00(𝒓1)𝜙100(𝒓2)     (5) 

The projected Schrödinger equation and its 
approximate solution 

Expressing the wavefunction in the form shown in 
equation (5) means that the Hamiltonian operator in 
equation (1) is in the matrix form of size 15x15. 
Therefore, equation (1) became the projected 
Schrödinger equation as presented in equation (6). 

[

𝐻1,1 ⋯ 𝐻1,15

⋮ ⋱ ⋮
𝐻15,1 ⋯ 𝐻15,15

] (

𝑐1,1

⋮
𝑐15,1

) = 𝐸 (

𝑐1,1

⋮
𝑐15,1

) (6) 

  To obtain the ground state energy of a 
quantum system, equation (6) was solved by first 
calculating the Hamiltonian matrix elements using 
equation (7). 

𝐻𝑖,𝑗 = ∬ 𝜙𝑖(𝒓1)𝜙𝑖(𝒓2) 𝐻̂𝜙𝑗(𝒓1)𝜙𝑗(𝒓2)𝑑𝒓1𝑑𝒓2  (7) 

Where the non-relativistic Hamiltonian operator 𝐻̂ is 
calculated using equation (8), where Hartree muon 
atomic units (m.a.u) are used in which the muon 
mass mμ=1, 

𝐻̂ = −
∇1

2

2
−

∇2
2

2
−

𝑍1

𝑟1
−

𝑍2

𝑟2
+

1

𝑟12
      (8) 

And the hydrogenic wave function was the product of 
the radial function R(r) and the angular function 
Y(θ,φ) as follows 

𝜙𝑖(𝒓1) = 𝑅𝑛𝑙(𝑟)𝑌𝑙
𝑚(𝜃, 𝜑)     (9) 

where 𝑅𝑛𝑙(𝑟) can be written in terms of associated 
Laguerre polynomial as shown in equation (10) and 
𝑌𝑙

𝑚(𝜃, 𝜑) is the spherical harmonics. 

𝑅𝑛𝑙(𝑟) = (
𝑍(𝑛 − 𝑙 − 1)!

𝑎𝜇(𝑛 + 𝑙)! 𝑛2
)

1
2

(
2𝑍

𝑛𝑎𝜇

) (
2𝑍𝑟

𝑛𝑎𝜇

)

𝑙

𝑒
−

𝑍𝑟
𝑛𝑎𝜇𝐿𝑛−𝑙−1

2𝑙+1  

(
2𝑍𝑟

𝑛𝑎𝜇
)                         (10) 

It is important to notice that 𝑎𝜇 in equation (10) is the 

modified Bohr radius due to the difference between 
the muon mass and the electron mass. The radial 
function as shown in equation (10) could be further 
written in muon atomic unit (m.a.u) using only s-
orbitals (l=0) as follows: 

𝑅𝑛0(𝑟) = (
𝑍(𝑛−1)!

𝑛!𝑛2 )

1

2
(

2𝑍

𝑛
) 𝑒−

𝑍𝑟

𝑛 𝐿𝑛−1
1 (

2𝑍𝑟

𝑛
)   (11) 

After Hamiltonian matrix elements were obtained 
using equation (7), they were then substituted into 

equation (6) which was then numerically solved using 
a Mathematica code modified from (Massé & Walker, 
2015). The solution of the equation includes the 
energy eigenvalues with their corresponding 
eigenvectors. 
 
RESULTS AND DISCUSSION 
Ground State Energies of XZ+

μ
-
μ
- (2≤Z≤36) 

The lowest energy eigenvalues resulted from 
solving equation (6) numerically for XZ+

μ
-
μ

- systems 
with 2≤Z≤36 represent their ground state energies. 
Results are shown in Table 1, where comparisons 
with previous calculations using the hyperspherical 
harmonics method (Khan, 2014) are also presented 
wherever available. The percentage differences are 
also presented in Table 1. 

It is evident from Table 1 that the ground state 
energies 1 1S obtained using the matrix method in 
this work are in very good agreement with those 
reported in Khan (2014). Percentage differences in 
energies ranged from 0.095 % for Si14+

μ
-
μ

- to 2.05% 
for He2+

μ
-
μ

-. This shows that even though the 
approximation applied in this study was simple, 
results were reasonably accurate. A more obvious 
comparison of our results with those presented in 
(Khan, 2014) is shown in Figure 1.  

In addition to the results of Khan (2014), 
following discussions present the comparisons of our 
results with other results in the literature using 
different approaches. Before his recent work in 
(Khan, 2014), Khan had actually calculated the 
ground state energies of some of exotic doubly 
muonic systems in (Khan, 2012), where the ground 
state energies of He2+

μ
-
μ

-, Li3+
μ

-
μ

-, Be4+
μ

-
μ

-, B5+
μ

-
μ

-, 
C6+

μ
-
μ

-, O8+
μ

-
μ

-, Ne10+
μ

-
μ

-, Si14+
μ

-
μ

-, and Ar18+
μ

-
μ

- were -
2.8990 m.a.u, -7.2714 m.a.u, -13.6418 m.a.u, -
22.0106 m.a.u, -32.3781 m.a.u, -59.1104 m.a.u, -
93.8422 m.a.u, -187.3400 m.a.u and -312.1292 
m.a.u,  respectively. % differences of these results 
with our results are very small (below 1 %), i.e. 
0.055%, 0.067%, 0.069%, 0.066%, 0.061%, 
0.046%, 0.029%, 0.028% and 0.682%, for the 
respective  systems.  Additionally, results in this study 
are  also  in  agreement with those reported by 
others.  For instance,  ground-state  energies 
reported in (Ancarani et al., 2010; Ancarani et al., 
2011) for He2+

μ
-
μ

- and Li3+
μ

-
μ

-  were -2.90107 m.a.u 
and -7.27660 m.a.u for the respective systems, 
which are also in agreement with our results with 
percentage differences of 1.965% and 0.989% 
respectively. Moreover, excellent agreement with our 
results  was  also  found  in  the  ground  state 
energy of He2+

μ
-
μ

-  reported in (Boimau et al., 2017) 
where the energies were -2.8476 m.a.u (percentage 
difference of 0.124%). Finally, Eskandari (Eskandari 
& Rezaie, 2004) also calculated the ground state 
energy of He2+

μ
-
μ

- a system using three different 
correlation  functions, the last of which yielded 
energy of -2.8206 m.a.u (percentage difference of 
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0.832%). The agreement with other reports in the 
literature as discussed above shows that despite 
being simple, hydrogenic wave functions used in this 
work yielded reasonably accurate ground-state 
energies of the exotic doubly muonic helium systems 
XZ+

μ
-
μ

-. One of the factors leading to the difference 
between our results and previous study by Eskandari 
(Eskandari & Rezaie, 2004) is that in the present 
work, the correlation function in the wave function is 
neglected. The absence of the correlation function 
means that some important short-range and long-

range correlation effects are not included in the 
calculation and therefore it will affect the accuracy of 
the calculation. Recently, other simple methods 
neglecting the correlation function were also 
developed including the semi-classical approximation 
(Pingak et al., 2021; Pingak et al., 2021), where it 
was reported that the accuracy in the energy of 
diatomic molecules are affected by the absence of 
the correlation function. Hence, in order to improve 
the accuracy, correlation function should be taken 
into account in the calculation. 

 
Table 1. Ground state energy 1 1S of exotic doubly muonic helium-like system XZ+

μ
-
μ

- (2≤Z≤36).  
All are presented in muon atomic unit (m.a.u). 

Z Atom/ 
ion 

This work 
(A) 

Khan (2014) 
(B) 

Percentage Difference 
(|A-B|*100/|B|) 

2 He2+
μ

-
μ

- -2.84406 -2.90358 2.04988 

3 Li3+
μ

-
μ

- -7.20461 -7.28028 1.03938 

4 Be4+
μ

-
μ

- -13.57320 -13.65664 0.61098 

5 B5+
μ

-
μ

- -21.94470 -22.03227 0.39746 

6 C6+
μ

-
μ

- -32.31750 -32.40836 0.28036 

7 N7+
μ

-
μ

- -44.69100   

8 O8+
μ

-
μ

- -59.06490 -59.16209 0.16428 

9 F9+
μ

-
μ

- -75.43910   

10 Ne10+
μ

-
μ

- -93.81340 -93.92118 0.11476 

11 Na11+
μ

-
μ

- -114.18800   

12 Mg12+
μ

-
μ

- -136.56200   

13 Al13+
μ

-
μ

- -160.93700   

14 Si14+
μ

-
μ

- -187.31200 -187.49066 0.09529 

15 P15+
μ

-
μ

- -215.68600   

16 S16+
μ

-
μ

- -246.06100   

17 Cl17+
μ

-
μ

- -278.43600   

18 Ar18+
μ

-
μ

- -312.81100 -313.2629 0.14426 

19 K19+
μ

-
μ

- -349.18600   

20 Ca20+
μ

-
μ

- -387.56100   

21 Sc21+
μ

-
μ

- -427.93500   

22 Ti22+
μ

-
μ

- -470.31000   

23 V23+
μ

-
μ

- -514.68500   

24 Cr24+
μ

-
μ

- -561.06000   

25 Mn25+
μ

-
μ

- -609.43500   

26 Fe26+
μ

-
μ

- -659.81000   

27 Co27+
μ

-
μ

- -712.18500   

28 Ni28+
μ

-
μ

- -766.56000   

29 Cu29+
μ

-
μ

- -822.93500   

30 Zn30+
μ

-
μ

- -881.31000   

31 Ga31+
μ

-
μ

- -941.68500   

32 Ge32+
μ

-
μ

- -1004.06000 -1014.84508 1.06273 

33 As33+
μ

-
μ

- -1068.43000   

34 Se34+
μ

-
μ

- -1134.81000   

35 Br35+
μ

-
μ

- -1203.18000   

36 Kr36+
μ

-
μ

- -1273.56000   
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Figure 1.  Ground state energies of exotic doubly helium like-ions XZ+

μ
-
μ

- are plotted against Z. Corresponding 
energies presented in (Khan, 2014) are also shown. 

 
It can be seen from Figure 1 that the ground state 

energies reported in (Khan, 2014) agree well with 
our results across all nuclear charge Z considered in 
this study. Furthermore, Khan (2014) only calculated 
the ground state energies for some selected ions and 
therefore there are some gaps in the figure for some 
ions. The gaps were filled very well by our results, as 
can be seen by the smooth curve connecting the 
energies of the ions for the whole range of Z 
considered. This also indicates that energies resulted 
from our calculations are accurate for all systems 
considered in this study. 

With the absence of experimental ground state 
energies for these systems, an agreement  between 
results of a new theoretical or computational study 
with older ones using different methods can be used 
to investigate whether a new proposed theoretical 
approach is ‘accurate’ or not. As discussed above, 
ground state energies available in the literature for 
the exotic doubly muonic helium-like ions calculated 
using other methods have been proven to be in very 
good agreement with our results in the present study, 
with percentage differences below 2 %. This clearly 
indicates that projecting the Schrödinger equation to 
a finite dimension space, in which the wave function 
was expressed as a finite linear combination of 
product of hydrogenic states and Hamiltonian is in 
matrix form, and solving it using matrix mechanics is 
a reasonably accurate method which can be further 
extended to study other three-body quantum systems.  

There are a number of methods that can be used 
to further study these systems including the Monte 
Carlo (Metropolis & Ulam, 1949) and the Density 
Matrix Renormalization Group (DMRG) (White, 
1992). The two methods have been successfully 
applied  to  calculate  the energy of the helium atom.  

For instance, Morcillo-Arencibia and co-workers 
(Morcillo-Arencibia et al., 2023) recently used the 
configuration interaction and the diffusion Monte 
Carlo to solve the Schrödinger equation of the helium 
atom. Furthermore, Snajberk (2017) applied the 
Density Matrix Renormalization Group to calculate 
energies of some quantum systems including the 
ground state energy of the helium atom. One of the 
advantages of using the proposed method in this 
manuscript is that it does not require any variational 
parameter and therefore it is more effective 
computationally. In addition, there is no need to 
include the momentum space truncation in the 
proposed method in contrast to the Density Matrix 
Renormalization Group which uses the momentum 
space expansion to reduce the computational cost. 
Nevertheless, with the absence of experimental data 
of these systems, theoretical studies are of great 
importance and therefore the use of different 
theoretical methods to investigate these systems is 
highly recommended. As another example, Dar and 
co-workers (Dar et al., 2021) recently applied the 
time-dependent density functional theory to 
accurately study the helium atom. 

Spectral Decomposition of the Ground State Energies 
In addition to ground state energies obtained 

from solving the time-independent Schrödinger, the 
eigenvectors corresponding to the energies were also 
investigated in the present work. This was performed 
to analyse the contribution of each basis state on the 
ground state energies of the systems, the probability 
amplitudes ci of the states with their square values ci

2 
are calculated and presented in Table 2. The 
probabilities are only shown for three systems namely 
He2+

μ
-
μ

- , Li3+
μ

-
μ

- , and Be4+
μ
-
μ

- , since the patterns are 
the same for other systems. 
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Table 2 Probability amplitudes of the states used in the wave function expansion for He2+
μ

-
μ

-, Li3+
μ

-
μ
- 

and Be4+
μ

-
μ

-.   

State 
Label 

State  
He2+

μ
-
μ

- Li3+
μ

-
μ

- Be4+
μ

-
μ

- 

ci ci
2 (%) ci ci

2 (%) ci ci
2 (%) 

1 1s1s -0.954 90.990 0.985 96.979 0.993 98.543 
2 1s2s 0.194 3.766 -0.110 1.217 -0.076 0.579 
3 2s1s 0.194 3.766 -0.110 1.217 -0.076 0.579 
4 1s3s 0.066 0.439 -0.042 0.173 -0.030 0.088 
5 3s1s 0.066 0.439 -0.042 0.173 -0.030 0.088 
6 1s4s 0.039 0.149 -0.024 0.060 -0.017 0.031 
7 4s1s 0.039 0.149 -0.024 0.060 -0.017 0.031 
8 1s5s 0.027 0.070 -0.017 0.028 -0.012 0.014 
9 5s1s 0.027 0.070 -0.017 0.028 -0.012 0.014 

10 1s6s 0.020 0.040 -0.013 0.016 -0.009 0.008 
11 6s1s 0.020 0.040 -0.013 0.016 -0.009 0.008 
12 1s7s 0.016 0.025 -0.010 0.010 -0.007 0.005 
13 7s1s 0.016 0.025 -0.010 0.010 -0.007 0.005 
14 1s8s 0.013 0.017 -0.008 0.006 -0.006 0.003 
15 8s1s 0.013 0.017 -0.008 0.006 -0.006 0.003 

  
 

 
Figure 2.  Probabilities of basis states used in obtaining ground state energies of XZ+

μ
-
μ

- (with 
X=He, Li and Be) are plotted against state labels defined in Table 2. 

  
Table 2 clearly indicates that the 1s1s state makes 

the  largest  contribution  to  the  ground  state 
energy of He2+

μ
-
μ

- atom (about 91%), while the 
contribution from higher states is significantly lower 
with a minimum of about 0.017% for 1s8s state. The 
results were the same as those presented in 
(Hutchinson,  Baker, & Marsiglio, 2013) who 
obtained around 91% contribution to the ground 
state  of  the  helium atom arising from the 1s1s 
state. This indicates that around 9% contribution 
should  come  from higher bound states as well as 
the unbound states.       

It can also be seen from Table 2 that the state 
with the largest proportion in the ground state of 
Li3+

μ
-
μ

- and Be4+
μ

-
μ

- systems were also the 1s1s state 
but with larger proportion compared to its proportion 
in the ground state energy of He2+

μ
-
μ

-. The 

compositions of the 1s1s state in the ground state 
energy of the Li3+

μ
-
μ

- and Be4+
μ

-
μ

- were about 96.98% 
and 98.54%, respectively. When one muon is in 
higher quantum states (1sns or ns1s where n>1), the 
contribution to the ground state energy decreases 
significantly reaching 0.006% and 0.003% for the 
respective systems.  

In addition to the above observations found in 
Table 2, it is also clear that the probabilities of 1sns 
states were the same as those of ns1s states. This 
indicates that a state in which the first muon is in the 
|1,0,0> state and the second one in the |n,0,0> 
state is equivalent to a state in which the first muon is 
in the |n,0,0> state and the second one is in the 
|1,0,0> state. A more obvious visualisation of the 
properties of the states based on data in Table 2 is 
shown in Figure 2.  
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It is clear from Figure 2 that the higher the states 
used (larger state labels), the less the contribution 
they made to the ground state energy of the systems. 
This is true for all systems especially for X=He, Li and 
Be as shown in Figure 2. It can also be seen that the 
larger the nuclear charge, the higher the contribution 
made by the 1s1s state (a state with label 1) to the 
ground state energy. This can be seen in Figure 2 for 
state label 1 (1s1s state), where the highest 
proportion of this state on the ground state energies 
is for the X=Be (Z=4), followed by X=Li (Z=3) and 
finally X=He (Z=2). These observations indicate that 
including higher bound states and unbound states 
would not significantly improve the accuracy of the 
calculations using this method.   
  
CONCLUSIONS  

In summary, the Schrödinger equation of exotic 
doubly muonic helium-like systems of the form XZ+

μ
-
μ

- 

has been solved with the matrix method using 15 
unsymmetrized hydrogenic basis s-states. Accurate 
ground state energies of the systems with nuclear 
charge 2≤Z≤36 were obtained from the solution to 
the Schrödinger equation. It was found that the 
ground state energies were in very good agreement 
with those reported in the literature using other 
methods. The analysis of the probability amplitudes 
from the eigenvectors of the ground state energies 
was also performed. The analysis indicated that the 
1s1s state had the highest proportion among all 
states used in the wave function expansion. 
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