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ABSTRACT. This research aims to prepare the proton-conducting solid electrolyte membrane based on carboxymethyl 
chitosan (CMCh) complexed with ammonium acetate (CH3COONH4). The membranes were prepared by using casting 
solution technique where the various weight percentages of ammonium acetate mixed to CMCh for obtaining optimum 
condition based on ionic conductivity analysis. Some characterizations were conducted to analysis the functional groups 
(involving complexation studies), ionic conductivities, mechanical properties, crystallinities, and thermal analysis by using 
FTIR, EIS, tensile tester, XRD, and TGA. The results showed that the optimum proton conductivity was obtained at the addition 
of 40% (w/w) CH3COONH4 salt as high as 1.39×10-4 S/cm and a tensile strength of 9.06 MPa. Based on the results, it can 
be concluded that the optimum condition of the membrane shows good characteristics to be applied as a proton conducting 
solid electrolyte. 
 
Keywords: Ammonium acetate, carboxymethyl chitosan, polymer electrolyte, proton conductivity, proton-conducting 
membrane. 

 
INTRODUCTION 

The availability decrement of fossil fuels and the 
environmental problems they impact have driven the 
development of energy storage and conversion 
technologies such as supercapacitors, fuel cells, and 
electrochemical double-layer capacitors (EDLC) 
(Boopathi et al., 2017; Dannoun et al., 2022; Nayla 
& Radiman, 2023; Sihombing et al., 2023). Currently, 
many technological developments require energy 
storage devices such as rechargeable batteries as a 
source of energy (Ahmed & Abdullah, 2020). 

Lithium-ion batteries are the most popular energy 
storage devices today due to their advantages, 
including relatively high energy density and long life 
cycle than other types of batteries (Han et al., 2021; 
Jiang et al., 2021; Singh et al., 2021; Yuan et al., 
2022). However, the electrolyte source derived from 
lithium salts is costly, causing research to shift to the 
search for electrolyte sources from cheaper salts such 
as sodium salts, potassium salts, and ammonium salts 
(proton conductors) (Aziz et al., 2021; Chandra et al., 
2016; Martinez-Cisneros et al., 2023; Nuryanto et al., 
2013; Tahir et al., 2022). When compared to other 

ions, protons (H+ ions) are the smallest ions and are 
therefore preferred to replace lithium ions, as they 
offer greater energy density (Alias et al., 2017; Heidari 
et al., 2018; Xu et al., 2022; J.-L. Yang et al., 2022) 

Based on the previous explanation, proton 
batteries are a candidate for replacing lithium-ion 
batteries. In proton batteries, the electrolyte source 
comes from salts that can dissociate protons, 
especially from ammonium salts such as ammonium 
tetrafluoroborate, ammonium iodide, ammonium 
hexafluorophosphate, ammonium fluoride and 
ammonium acetate (Abdullah et al., 2021; Aziz et al., 
2020; Hadi et al., 2022; Lakshmi et al., 2021). 

The electrolyte is one of the crucial components in 
lithium-ion batteries. Generally, the rechargeable 
batteries' electrolyte still uses liquid (Septiana et al., 
2019). Using liquid electrolytes provides advantages 
in  high  ion  conductivity but poor safety aspects. 
Liquid  electrolytes  are  flammable because the 
solvent used has a low boiling point, corrosive, not 
environmentally friendly, and others (Huy et al., 2021; 
Jian et al., 2022; Pratiwi, 2018; Varzi et al., 2016; Yao 
et al., 2019). 
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Using solid electrolytes to replace liquid electrolytes 
in rechargeable batteries, including proton batteries, 
offers advantages, excellent mechanical stability and 
thermal (Yusof et al., 2014). Solid electrolytes have at 
least two main components: polymer and electrolyte 
(salt). The choice of polymer type largely determines 
the performance of the solid electrolyte. Some 
common synthetic polymers that are widely used as the 
main matrix of solid electrolytes include polyethylene 
(PE), polypropylene (PP), polyethylene oxide (PEO), 
polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF), 
polymethyl methacrylate (PMMA) (Babiker et al., 
2023; Hosseinioun & Paillard, 2020; Manoharan et 
al., 2021; Putri et al., 2021; Qiu et al., 2019; Xie et 
al., 2021; Zhu et al., 2021). However, the impact of 
using these polymers on the environment by industrial-
scale fabrication processes and using synthetic 
polymers must be minimized.  

Biopolymers can be used as an alternative to 
synthetic polymers as solid electrolyte polymer hosts 
because they have advantages over synthetic 
polymers, such as offering many polar functional 
groups such as -O-, -OH, -C=O, -NH2, and others as 
transit sites for migrating ions. These functional groups 
can easily interact to form van der Waals, Coulomb, 
and hydrogen bond interactions that cannot be found 
in a single synthetic polymer (Francis et al., 2020; 
Lizundia & Kundu, 2021; Schlemmer et al., 2021). 

Carboxymethyl chitosan is a chitosan-derived 
compound produced by substituting carboxymethyl 
groups on amine and hydroxyl groups (Miao et al., 
2008; Suseno et al., 2017). Successful research 
reported that using carboxymethyl chitosan as a solid 
electrolyte membrane is a complex supercapacitor of 
potassium tetraborate and potassium carbonate (Cai 
et al., 2023). Carboxymethyl chitosan has advantages 
in terms of conductivity compared to the original 
compound (chitosan). Based on previous research, 
chitosan has a conductivity value of 2.93×10-9S/cm 
lower than carboxymethyl chitosan, which is 2.20×10-

7S/cm (Shamsudin et al., 2020). 
To increase the conductivity value of carboxymethyl 

chitosan, modification is carried out by doping 
ammonium acetate salt as a proton source (H+) (Alias 
et al., 2017). It is known that ammonium salts can 
increase proton conductivity in carboxymethyl 
cellulose polymer electrolytes (Brza et al., 2020). 
Ammonium acetate is a plasticizer because it can 
increase amorphous properties and reduce the glass 
transition temperature in solid electrolytes (Pahune, 
2011). Based on this background, this research was 
conducted to make a carboxymethyl chitosan solid 
electrolyte membrane complexed with ammonium 
acetate salt. The proton-conducting solid electrolyte 
membrane in this study was characterized using 
Fourier Transform Infra-Red (FTIR), Electrochemical 
Impedance Spectroscopy (EIS), tensile tester, X-ray 
Diffraction (XRD), and Thermogravimetry Analysis 
(TGA). 

EXPERIMENTAL SECTION 
Materials and Instruments 

The chemicals used were carboxymethyl chitosan 
(commercial), ammonium acetate (Loba-Chemie, 
p.a), methanol (Merck, p.a), and aquades. The 
instruments used were FTIR (Thermoscientific, type 
Nicolet IS5), Electrochemical Impedance Spectroscopy 
(EIS, HIOKI, type 3532-50 LCR HiTESTER), tensile 
tester (AGS-X) and Thermogravimetry Analysis (TGA, 
SETARAM Thermal Analyzer Labsys Evo S60). 

Preparation CMCh + AmAc salt-based Solid 
Electrolyte Membrane 

The CMCh-based solid electrolyte membranes 
doped with AmAc salt were prepared using a casting 
solution technique. CMCh and AmAc salt were 
dissolved in aquades. The mixture was stirred for 24 h 
to obtain a homogenous solution. The solutions were 
poured onto the petri dish and vapored at 60oC in the 
oven for 24 h. The solid electrolyte membranes were 
prepared by comparing between CMCh and AmAc as 
follows, i.e. (100:0), (90:10), (80:20), (70:30), 
(60:40), (50:50) %w/w.  

Characterizations  
All of them were characterized using Fourier 

Transform Infrared (FTIR), ElectrochemicalImpedance 
Spectroscopy (EIS), tensile tester, X-ray Diffraction 
(XRD), and Thermogravimetry Analysis (TGA). 
Molecular Structure Elucidation 

Molecular structure analysis was conducted by 
using Nuclear Magnetic Resonance (NMR, JEOL) with 
a frequency of 500 MHz.  

Functional Groups Analysis 
Functional groups were characterized for 

membrane materials (carboxymethyl chitosan and 
ammonium acetate) and solid electrolyte membranes 
using Thermo Scientific type FTIR. The solid electrolyte 
membrane characterization was carried out using 
Fourier Transform Infra-Red Attenuated Total Reflection 
(FTIR-ATR) with a wave number range of 500-4000 
cm-1 (Hadi, Aziz, Brza et al., 2022; Singh et al., 2020). 

Percentage of Free Ions and Contact Ions 
The FTIR deconvolution carried out the 

determination of the percentage of free ions. The 
calculation uses the following equation (Mejenom et 
al., 2018): 

Free ions(%) =
𝐴𝑓

𝐴𝑓+𝐴𝑐
× 100%  (1) 

Contact ion(%) = 100 - free ions (2) 

Where Af is the area under the peak for free ions, and 
Ac is the area under the peak for contact ions. 
Ion Transport Parameters 

Ion transport analysis includes density (ƞ), ionic 
mobility (μ), and diffusion coefficient (D). The 
calculation uses the following equation (Abdalrahman 
et al., 2022):  

Ƞ =
𝑀×𝑁𝐴×𝑓𝑟𝑒𝑒 𝑖𝑜𝑛𝑠 (%)

𝑉𝑡𝑜𝑡𝑎𝑙
   (4) 
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𝜇 =
𝜎

Ƞ𝑒
      (5) 

𝐷 = (
𝑘𝑇𝜇

𝑒
)    (6)  

Where M is moles of salt used, NA is Avogadro number 
(6.02×10-23 mol-1), Vtotal is total volume of solvent used 
for solid electrolyte membrane preparation, σ is 
proton conductivity of solid electrolyte membrane, e is 
electric charge (1.602×10-19 C), k is Boltzman 
constant (1.38×10-23 JK-1) and T is absolute 
temperature (273 K).  

Force Constant 
The force constant (k) can be calculated using 

Hooke's law through the following equation (Akhtar et 
al., 2019; Hazaana et al., 2023): 

𝑣 =  
1

2𝜋𝑐
√

𝑘

𝜇
 N/cm     (7) 

𝑘 = 4𝜋2𝑐2𝑣2𝜇   (8) 

µ = 
𝑚1×𝑚2

𝑚1+𝑚2
     (9) 

where v is wavenumber (cm-1), c is the velocity of light 
(2.998×108 m.s-1), k is force constant (N/cm), µ is 
reduced mass, and π = 3,14. 

Absorption Bandwidth and Transmittance Intensity 
Widening of the absorption band and the length of 

transmittance intensity in IR spectra can be calculated 
with the following equation (Hafiza & Isa, 2017): 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝑐𝑚−1) = 𝐵𝑡 − 𝐵0   (10) 

𝑇% = 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑇𝑝𝑢𝑛𝑐𝑎𝑘  (11) 

where Bt is the final baseline, and B0 is the initial 
baseline. 

Proton Conductivities Analysis 
Proton conductivity measurements of each sample 

were carried out using electrochemical impedance 
spectroscopy (EIS, HIOKI, type 3532-50 LCR 
HiTESTER) in the frequency range 42 Hz-1 MHz at 
room temperature. The samples were sandwiched with 
stainless steel electrodes connected to the LCR tester 
(Hemalatha et al., 2021; Mahalakshmi et al., 2019; 
Rahamathullah et al., 2020). Rahamathullah et al 
(2020) mentioned that the calculation of bulk proton 
conductivity could be done with the following equation 
(Rahamathullah et al., 2020): 

𝜎 =
𝑡

𝑅𝑏×𝐴
      (12) 

Where σ is bulk proton conductivity (S/cm), t is the 
thickness (cm), A is the surface area of the electrode 
contact area with the membrane (cm2), and Rb is bulk 
resistance (ohm). 
Alfannakh and Ibrahim (2022) suggest that EIS test 
results can be utilized to calculate proton conductivity 
using Jonscher's Power Law equation, which can be 
done using OriginLab software (AlFannakh & Ibrahim, 
2022). 

𝜎𝐴𝐶 = 𝜎𝐷𝐶 + 𝐴𝜔𝑛    (13) 

where σAC is AC proton conductivity (S/cm), σDC is DC 
proton conductivity (S/cm), A is frequency-dependent 
constant (S.cmn+1), ω is the angular frequency (rad/s) 
and n is Power Law exponent (0 ≤ n ≤ 1). 

Degree of Crystallinity 
The results of characterization with XRD are in the 

form of diffractograms that can be used to calculate 
the degree of crystallinity. Ahmed and Abdullah (2020) 
mentioned that the calculation of the degree of 
crystallinity can be done by the deconvolution method 
using OriginLab software (Ahmed & Abdullah, 2020; 
Zainuddin et al., 2020). The calculation of the degree 
of crystallinity uses the following equation: 

(Xc) (%) = 
𝐶𝑎

𝐶𝑎+𝐴𝑎
 × 100    (14) 

where Xc is is the degree of crystallinity, Ac is the crystal 
area, and Aa is the amorphous area. 

Mechanical Properties Analysis 
The mechanical strength of pure CMCh and 

ammonium acetate complexed CMCh solid electrolyte 
membrane was measured using a tensile tester using 
the ASTM d 882 method. The solid electrolyte 
membranes were cut into rectangular shapes with a 
size of 5 cm × 1 cm. Then, the solid electrolyte 
membrane was tested with a gauge length of 2 cm, a 
load cell of 10 N, and a test speed of 10 mm/min 
(Sudiarti et al., 2017; Triandini, 2018). 

Crystallinities Analysis 
Crystallinity analysis of the solid electrolyte 

membrane was performed using X-ray diffraction 
(XRD). The radiation beam was Cu Kα at 2θ with a 
range of 5 to 800 (Ahmed & Abdullah, 2020; 
Zainuddin et al., 2020). 

Thermal Analysis 
Thermal stability characterization of solid 

electrolyte membranes was performed using 
thermogravimetric analysis (TGA SETARAM Thermal 
analyzer Labsys Evo S60). The samples were heated 
from 25 0C to 6000C at a rate of 10 0C/min under 
argon gas flow (Samsudin et al., 2014; Triandini, 
2018; H. Yang et al., 2019). 
 
RESULTS AND DISCUSSION 
Functional Group Analysis of Chitosan and 
Carboxymethyl Chitosan 

Carboxymethyl chitosan is divided into several 
types based on its substitution, including O-
carboxymethyl chitosan (O-CM-chitosan), N-
carboxymethyl chitosan (N-CM-chitosan), N, O-
carboxymethyl chitosan (N, O-CM-chitosan), and 
N,N-carboxymethyl chitosan (N,N-CM-chitosan) 
(Ellina et al., 2021). To determine the type and 
validation of the structure, functional group analysis 
was carried out with FTIR-KBr, which can be seen in 
Figure 1. 

The chitosan used as a comparison material is a 
commercial chitosan. The presence of amine groups 
in chitosan can be detected from the broadened peak 



Molekul, Vol. 19. No. 3, November 2024: 523 – 540 

526 

at 3450 cm-1, which is the stretching vibration of -OH 
and -NH2 groups with overlapping wavenumbers 
(Bukzem et al., 2016). Peaks of -CH- stretching and 
bending vibrations were observed at wave numbers 
2920 and 1383 cm-1 (Bukzem et al., 2016; Lei et al., 
2020). Meanwhile, the wave number 1639 cm-1 shows 
C=O vibrations and 1604 cm-1 is a deformed N-H 
vibration (Lusiana et al., 2014; Müller et al., 2015). 
However, the presence of N-H vibrations in chitosan 
has a small intensity, indicating that the amount of 
amide in chitosan is small.  

The peak of C-N and C-H bending vibrations was 
observed at 1383 cm-1 (Morandim-Giannetti et al., 
2019; Tzaneva et al., 2017). The ether group (-C-O-
C-) vibration connecting the glycosidic ring of chitosan 
was observed at 1154 cm-1 (Pineda et al., 2014; 
Vaghani et al., 2012). The peak of C- O stretching 
vibrations originating from within the pyranose ring 
was observed at 1074 cm-1 (Katugampola et al., 
2014), while the wave number 556 cm-1 showed N-H 
wagging vibrations (Pineda et al., 2014).  

The structure of chitosan and carboxymethyl 
chitosan differs significantly due to the carboxyl group, 
resulting in a new peak at 1412 cm-1 displaying C-O-
H vibrations (Putra et al., 2016; Tzaneva et al., 2017). 
Two firm peaks at 1600 cm-1 and 1412 cm-1 indicate 
carboxymethylation, similar to Palaniselvam et al.'s 
research (Palaniselvam et al., 2023). 

Band broadening was determined using equation 
10. The results can be seen in Figure 2. The band 
widening at wavenumber 3435 cm-1 initially 
amounted to 725.253 cm-1 in the chitosan sample and 
widened to 763.646 cm-1 in the carboxymethyl 
chitosan sample. Kurniasih et al. (2012) reported 

band widening in the -OH and -NH vibrational 
regions, indicating that carboxymethyl is substituted in 
both groups (Kurniasih et al., 2012). Band widening 
was also observed at a wave number of 1600 cm-1 
initially at 251.564 cm-1 in the chitosan sample and 
widened to 323.888 cm-1 in the carboxymethyl 
chitosan sample with a change in the wavenumber, 
indicating that carboxymethyl is substituted in the N-H 
group (Doshi et al., 2017; Lusiana et al., 2014). Based 
on the results, it can be concluded that the type of 
carboxymethyl chitosan used in this study is N,O-
Carboxymethyl chitosan. The structure can be seen in 
Figure 2. 

Functional group analysis on the pure CMCh 
membrane and AmAc-complexed CMCh membrane 
was performed using FTIR ATR. Comparison of IR 
spectra of pure CMCh membrane and CMCh-AmAc 
membrane (Figure 3) revealed the following and 
summarised in Table 1. No new peaks were formed in 
the IR spectrum of the AmAc-complexed CMCh 
membrane, indicating that no new bonds were formed 
between CMCh and the AmAc salt. However, based 
on observations, there is a shift in wave numbers 
towards lower O-H and N-H stretching vibrations from 
pure CMCh membrane (3369 cm-1) to (3325 cm-1) 
when AmAc salt is added. The wave number shift also 
occurs in C=O vibrations from 1583 cm-1 in pure 
CMCh membrane samples to 1579 cm-1 when CMCh 
membranes were added with salt. In C-O-H stretching 
vibrations, there was also a shift in wavenumber from 
1412 cm-1 to 1408 cm-1. A wavenumber shift indicates 
the interaction of complex formation between the host 
polymer and AmAc salt (Singh et al., 2020). 

 

 

Figure 1. IR spectra of (a) Chitosan and (b) Carboxymethyl Chitosan 
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Figure 2. Band Widening in FTIR Analysis of (a) Chitosan and (b) Carboxymethyl Chitosan 

 

 
Figure 3. IR Spectra Solid Electrolyte Membranes of (a) CMCh, (b) CMCh-AmAc (90-10), (c) CMCh-AmAc (80-
20), (d) CMCh-AmAc (70-30), (e) CMCh-AmAc (60-40) and (f) CMCh-AmAc (50-50) 

 

Table 1. FTIR Analysis of AmAc-Complexed CMCh Solid Electrolyte Membrane 

Functional group 

Wavenumber (cm-1) 

CMCh 
CMCh-
AmAc  

(90-10) 

CMCh-
AmAc  

(80-20) 

CMCh-
AmAc  

(70-30) 

CMCh-
AmAc  

(60-40) 

CMCh-
AmAc  

(50-50) 

O-H and N-H 
stretching 

3369 3350 3325 3254 3213 3224 

C-H ulur 2919 2921 2919 2919 2920 2919 

C=O (asam 
karboksilat) 

1583 1583 1583 1583 1579 1581 

C-O-H dan N-H 
bending 

1412 1412 1412 1411 1408 1410 

C-N stretching 1321 1321 1321 1321 1321 1321 

C-O-C (ether) 1020 1020 1020 1020 1019 1019 
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The C-O-C vibration (1020 cm-1) did not 
experience a wavenumber shifting. This indicates that 
the C-O group on the host polymer provides weak Van 
der Waals interactions with H+ from the AmAc salt 
deprotonation process. On the other hand, there is a 
strong interaction between H+ from the AmAc salt and 
the O-H, N-H, and C-O-H functional groups on the 
CMCh host polymer. These conditions are desirable 
because these functional groups provide good 
conducting properties (Rasali et al., 2020; Saadiah et 
al., 2020). 

Complexation formation was also observed in the 
wavenumber interval of 1500-1700 cm-1, which shows 
C=O vibrations. In these vibrations, the wavenumber 
shift did not occur significantly. However, there is a 
change in intensity Figure 4. The change in intensity 
indicates that there is an interaction between CMCh 
(oxygen atoms in the carboxyl group) and ammonium 

ions (free protons) (R et al., 2022; Rasali et al., 2020). 
Transmittance intensity was calculated with Eq. 11 to 
determine the effect of salt addition and summarized 
in Table 2; the transmittance intensity changes 
irregularly. This shows that the transmittance intensity 
cannot be a reference for the amount of salt in the 
polymer matrix. This phenomenon is likely due to the 
membrane's inhomogeneity and thickness, which 
cannot be controlled in this study. The salt 
complexation in the electrolyte polymer matrix is also 
indicated by band broadening; it can be quantified 
using equation 10. The results of the band widening 
calculation have been summarized in Table 2, where 
the widening occurred from 214 to 226 cm-1. 
According to Gedam & Bhoga (2010), band 
broadening correlates with adding salt and can form 
complexes that cause inter-polymer interactions to 
weaken (Gedam & Bhoga, 2010).  

 

 

Figure 4. Transmittance Intensity and Band Widening in FTIR Analysis of Solid Electrolyte Membrane 

 
Table 2. Analysis of transmittance intensity and absorption band broadening of AmAc-complexed 
CMCh solid electrolyte membrane 

Sample 
1700-1500 cm-1 

T% Absorption Band Broadening (cm-1) 

CMCh 47 209 

CMCh-AmAc (90-10) 45 214 

CMCh-AmAc (80-20) 46 216 

CMCh-AmAc (70-30) 54 221 

CMCh-AmAc (60-40) 46 225 

CMCh-AmAc (50-50) 52 226 
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The wavenumber shifting and intensity change can 
be related to the force constant with Eq. 7-9. The force 
constant is calculated on the C=O vibration and 
tabulated in Table 2. Based on these data, the CMCh-
AmAc (60-40) sample has the smallest force constant 
value compared to other samples at 100.6 N/cm. As 
salt is added, the force constant value decreases, 
indicating that the bond strength decreases. It also 
shows that the complexation between the polymer and 
salt increases (Hazaana et al., 2023; Ramalingam et 
al., 2011). 

Molecular Structure Analysis of Carboxymethyl 
Chitosan 

The molecular structure of carboxymethyl chitosan 
was analyzed using 1H-NMR and 13C-NMR (Figure 5). 
The 1H-NMR spectrum showed a chemical shift at 
3.457 ppm, indicating two hydrogens from the 
carboxymethyl group bound to the nitrogen group 
(Palaniselvam et al., 2023). Chemical shifts between 
3.777 to 3.997 ppm indicate that carboxymethylation 
occurs in the hydroxyl groups at C-3 and C-6. While 
carboxymethylation that occurs in the primary amine 
group shifts at 3.457 ppm (Baari et al., 2021; Kono & 
Kato, 2021). The signal at 3.77 to 3.997 ppm is a 
characteristic that indicates that the type of 

carboxymethyl chitosan substitution is N,O-
carboxymethyl chitosan (Jaidee et al., 2012). This 1H-
NMR spectrum does not give rise to peaks at 1 to 2 
ppm indicating the presence of methyl protons in the 
acetyl group. This phenomenon indicates that the 
presence of amide is very little in carboxymethyl 
chitosan so it does not give rise to chemical shifts in 
1H-NMR (Baari et al., 2021). 

Figure 5b is the 13C-NMR spectrum of 
carboxymethyl chitosan. At 72.69 to 76.67 ppm, it 
shows a methylene carbon group. The O-C-O ring 
carbon with the numerical C-1 appears at 95.76 to 
99.72 ppm. At 71.15 to 71.72 ppm, it shows carbon 
binding with hydroxyl groups. While carbon binding to 
the amino group C-N appears in the area of 60.40 to 
69.31 ppm (Baari et al., 2021; Sun et al., 2019). 
Based on the peaks that appear in the 13C-NMR 
spectrum indicate that the type of carboxymethyl 
chitosan substitution is N,O-Carboxymethyl chitosan. 
This became validation data from the initial analysis 
using FTIR. However, the 13C-NMR spectrum did not 
show peaks at 170 to 180 ppm, indicating the 
presence of hydroxyl and amino groups in the 
carboxymethyl group. This may occur due to the poor 
solubility factor of N, O-carboxymethyl chitosan with 
D2O (Baari et al., 2021).

 
Table 3. Force Constant of AmAc-Complexed CMCh Solid Electrolyte Membrane 

Sample Functional Group Vibration Frequency (cm-1) Force Constant (N/cm) 

CMCh 

C=O 

1583 101.1 
 

CMCh-AmAc (90-10) 1583 101.1 
CMCh-AmAc (80-20) 1583 101.1 
CMCh-AmAc (70-30) 1583 101.1 
CMCh-AmAc (60-40) 1579 100.6 
CMCh-AmAc (50-50) 1581 100.8 

 
  

 
(a) 
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(b) 

Figure 5. NMR Spectra Carboxymethyl Chitosan (a) 1H-NMR (b) 13C-NMR 

 

 
(a) 

 
(b) 

Figure 6. Structure (a) chitosan dan (b) N,O-carboxymethyl chitosan 
 

 

Figure 7. Proposed Mechanism of Proton Hopping on Carboxymethyl Chitosan 
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Proton transfer in solid electrolyte polymers 
typically involves proton jumping. Carboxymethyl 
chitosan, with its polar groups with free electrons, is a 
transit place for protons before jumping between polar 
groups. The host polymer's ammonium acetate salt 
dissociates into ammonium and acetate ions, 
releasing one hydrogen bond. Protons interact with 
polar groups on carboxymethyl chitosan, causing 
movement in the polymer chain. This mechanism is 
illustrated in Figure 7. 

Proton Conductivity Analysis 
The ion conductivity of the AmAc-complexed 

CMCh solid electrolyte membrane can be determined 
by EIS analysis at room temperature. The 
measurement results with EIS produce a conductance 
vs frequency graph shown in Figure 8 and are then 
processed to obtain DC conductivity using Jonscher's 
power law equation (Equation 13).  

The fitting results (Table 4) show that the pure 
CMCh solid electrolyte membrane has the lowest 

conductivity value of 1.40×10-8 S/cm. However, salt in 
the CMCh solid electrolyte polymer membrane can 
increase proton conductivity. The presence of 40% 
AmAc salt produces the optimum proton conductivity 
of 7.83×10-5 S/cm. Fauzan et al (2020) stated that 
adding salt to solid electrolyte membranes can 
increase ion conductivity (Fauzan et al., 2020). This 
statement aligns with research by Martinez-Cineros et 
al. (2023). Proton conductivity increases due to 
amorphous increment as complexation between salt 
and host polymer consequence. This property 
facilitates ion mobilization and the movement of 
polymer chains (Martinez-Cisneros et al., 2023). 
However, the proton conductivity of the CMCh-AmAc 
(50-50) variant decreased due to agglomeration, so 
proton mobility was impaired. Salt concentrations that 
are too high can also cause ions with polymer chains 
to have a too tight distance, so ions experience 
association back into neutral ions (Fauzan et al., 
2020). 
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Figure 8. Conductance vs Frequency Curve 

 

 
Figure 9. Cole-Cole Curve of CMCh-AmAc Solid Electrolyte Membrane 



Molekul, Vol. 19. No. 3, November 2024: 523 – 540 

532 

Table 4. Proton Conductivity of AmAc-Complexed CMCh Solid Electrolyte Membrane 

Sample t (cm) A (cm2) Rbulk (ohm) σDC (S/cm) 
σDC Proton Bulk 

(S/cm) 

CMCh 0.001 0.785 1.72×103 1.40×10-8 7.41×10-7 

CMCh-AmAc (90-10) 0.004 0.785 2.03×103 3.34×10-8 2.51×10-6 

CMCh-AmAc (80-20) 0.005 0.785 2.63×103 2.06×10-8 2.42×10-6 

CMCh-AmAc (70-30) 0.005 0.785 1.90×103 4.44×10-8 3.36×10-6 

CMCh-AmAc (60-40) 0.006 0.785 5.50×101 7.83×10-5 1.39×10-4 

CMCh-AmAc (50-50) 0.001 0.785 2.42×103 1.06×10-7 5.26×10-7 

 

Table 5. Free Ions and Contact Ion of AmAc-Complexed CMCh Solid Electrolyte Membrane 

Sample 
1500-1700 cm-1 

Free Ions (%) Contact Ion (%) 

CMCh 59.869 40.131 

CMCh-AmAc (90-10) 60.080 39.920 

CMCh-AmAc (80-20) 60.048 39.952 

CMCh-AmAc (70-30) 62.297 37.703 

CMCh-AmAc (60-40) 65.195 34.805 

CMCh-AmAc (50-50) 63.236 36.764 

 
Measurements with EIS can also produce bulk 

proton conductivity values using bulk resistance values 
(Equation 12) obtained from the cole-cole plot shown 
in Figure 9. The highest bulk proton conductivity 
occurs in the CMCh sample with 40% (w/w) salt 
addition, which is 1.39×10-4 S/cm (summarized in 
Table 4). The phenomenon shows that decreasing bulk 
resistance causes bulk proton conductivity to increase; 
this is to the research of Ghani et al (2019). Imperiyka 
et al. (2013) reported that the decrease in bulk 
resistance when salt is added is due to the increase of 
amorphous regions in the solid electrolyte polymer, 
which facilitates the movement of ions in the polymer 
faster (Imperiyka et al., 2013). 

Percentage of Free Ions and Contact Ions 
The dissociation of ammonium acetate salt into 

cations and anions occurs due to interactions with 
polar groups on carboxymethyl chitosan. The CMCh 
sample has smaller free ions due to not adding 
ammonium acetate salt, while the CMCh-AmAc (60-
40) variant has the highest free ion value shown in 
Table 5.  

In the CMCh-AmAc (50-50) variant, the free ion is 
slightly decreased compared to the CMCh-AmAc (60-
40) variant. The decrement is occured due to the 
electrostatic forces so that cations-anions experience 
association. This phenomenon can be seen from 
contact ions increment. The ion -pair inhibit the proton 
to move (Aziz et al., 2020). 

Ion Transport Parameters 
Table 6 shows that density (η) increases with salt 

concentration, indicating increased ions in the 

polymer matrix. The optimum ion mobilization (µ) and 
diffusion coefficient (D) values are found in solid 
electrolyte membranes with 40% salt concentration, 
indicating ion mobility and diffusion coefficient 
contribute to conductivity. However, an increased 
acetate salt concentration (50% w/w) increases density, 
causing high energy required for ion migration due to 
proton density. 

Mechanical Properties Analysis 
The study analysis the mechanical properties of 

solid electrolyte membranes, revealing that salt 
addition decreases tensile strength and elastic 
modulus, indicating increased flexibility shown in Table 
7. The CMCh-AmAc membrane's mechanical 
properties, influenced by segmental motion, impact 
conductivity. 

Adding 40% (w/w) AmAc salt to electrolyte 
membranes increases flexibility, segmental motion, 
and conductivity. However, this also decreases the 
tensile strength value. Research by Klongkan and 
Phumcusak (2015) and Wang et al. (2020) shows that 
salt concentration decreases the tensile strength value 
(Klongkan & Pumchusak, 2015; Wang et al., 2020). 
Yulianti et al. (2013) also found that salt reduces the 
strength of intermolecular forces, affecting the 
membrane's properties from rigid to flexible. The 
material's crystallinity also influences these changes 
(Yulianti et al., 2013). However, when adding 50% 
AmAc salt, there was an increase in the elastic 
modulus value (Summarized in Table 7). This is due to 
the re-association to form ammonium acetate salt so 
that the polymer matrix interaction is strong again. 
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Figure 10. FTIR Deconvolution Curve of Solid Electrolyte Membrane 
 

Table 6. Ion Transport Parameter of AmAc-Complexed CMCh Solid Electrolyte Membrane 

Sample 𝜂 (cm-3) μ (cm-2 mL-1
S
-1) D (cm2s-1) 

CMCh-AmAc (90-10) 1.173×1021 1.337×10-8 3.148×10-10 

CMCh-AmAc (80-20) 2.345×1021 6.462×10-9 1.522×10-10 

CMCh-AmAc (70-30) 3.649×1021 5.750×10-9 1.354×10-10 

CMCh-AmAc (60-40) 5.092×1021 1.707×10-7 4.020×10-09 

CMCh-AmAc (50-50) 6.173×1021 5.324×10-10 1.254×10-11 
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Table 7. Ion transport parameter of AmAc-complexed CMCh solid electrolyte membrane 

Sample Tensile Strength  
(MPa) 

Elongation 
Break (%) 

Elastisitas Modulus (MPa) 

CMCh 86.90 7.61 4020 
CMCh-AmAc (90-10) 66.65 3.03 3030 
CMCh-AmAc (80-20) 64.42 4.04 3860 
CMCh-AmAc (70-30) 56.13 7.27 2390 
CMCh-AmAc (60-40) 9.06 41.73 50 
CMCh-AmAc (50-50) 64.59 6.91 2070 

 
Crystallinity Analysis 

X-ray diffraction studies were conducted to 
investigate the changes in semicrystalline properties of 
pure CMCh membrane and CMCh-AmAc (60-40) 
membrane. Sari et al (2016) suggested that the 
diffraction peak of CMCh is at 2𝞱 = 19o (Sari et al. 
2016). Previous research also showed that the CMCh 
diffraction peaks were at 2𝞱 = 9, 20, 34, 35, and 45o. 
In this study, the diffraction peak of the CMCh 
membrane is located at 21.3o, while the diffraction 
peak of the CMCh-AmAc (60-40) membrane has a 
peak shift at 18.5o, depicted in Figure 11. According 
to Kumar et al (2017), the shift in the diffractogram 
peak can occur due to the interaction between the 
polymer and salt (Kumar et al., 2017). The addition of 
salt also causes a widening of the diffraction peak and 
a decrease in intensity, indicating an increase in the 
amorphous region due to the CMCh host polymer 
complexing with AmAc.  

Adding salt can reduce the degree of crystallinity, 
which is determined using the deconvolution method 
and calculated by Equation 14. This is due to structural 
changes and hydrogen interactions (Wakrim et al., 
2023). AmAc salts can form intermolecular 
coordination in the crystalline area, resulting in more 
flexible  chains.  Amorphous  areas  are  preferred  in 
solid electrolyte membrane manufacturing due to their 

ability to facilitate ion transport and reduce energy 
barriers for segmental movement (Pandi et al., 2016); 
(Du et al., 2009; Gedam & Bhoga, 2010; Singh et al., 
2020). 
Thermal Analysis 

The thermal stability of solid electrolyte membranes 
is crucial for proton battery safety, as it prevents short 
circuits between the anode and cathode. At 100oC, 
CMCh and CMCh-AmAC (60-40) membranes 
evaporated with weight losses of 15.95% and 6.69%, 
respectively. Adding salt decreases weight degradation 
due to its hydrophilic properties (Noor et al., 2010). 
CMCh membranes doped with AmAc salt have lower 
thermal stability than pure CMCh. The decrease in 
thermal stability is due to the formation of an 
amorphous phase between AmAc salt and CMCh 
polymer cations, which weakens intermolecular 
interactions (Genier et al., 2019; Jumaah et al., 
2015). The DTG curve shows that CMCh membranes 
show maximum weight loss at 272.29oC (Table 8, 
Figure 12), indicating side chain degradation, while 
CMCh-AmAc (60-40) membranes show structural 
decomposition. The CMCh membrane has a higher 
maximum degradation temperature than the CMCh-
AmAc (60-40) product, indicating that adding salt can 
reduce thermal stability.

 

 

Figure 11. Diffractogram XRD Solid Electrolyte Membrane 
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Figure 12. TGA and DTG (a) CMCh (b) CMCh-AmAc (60-40) 
 

Table 8. Thermal analysis of AmAc-complexed CMCh solid electrolyte membrane 

Sample Tonset (oC) Toffset (oC) Tmax 1 (oC) Tmax 2 (oC) 

CMCh 266.89 315.23 272.29 303.58 
CMCh-AmAc (60-40) 257.82 313.46 269.55 288.1 

 
CONCLUSIONS 

The carboxymethyl chitosan-based solid electrolyte membrane complexed with ammonium acetate was 
successfully prepared using the pour-molding method with variations in the composition of ammonium acetate 
salts of 0, 10, 20, 30, 40, and 50% (w/w). Based on the research results for all compositions, the solid electrolyte 
membrane with the best condition is CMCh complexed with AmAc as much as 40% (w/w) and characterized by 
the highest ionic conductivity value of 1.39×10-4 S/cm. However, adding salt decreased the degree of 
crystallinity, mechanical properties, and thermal stability. 
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