

EKO-REGIONAL: JURNAL PEMBANGUNAN EKONOMI WILAYAH Volume 20, Issue 1, Maret 2025, pp. 43 – 58 <u>https://jos.unsoed.ac.id/index.php/er/article/view/13713</u> DOI: <u>https://doi.org/10.32424/er.v20i1.13713</u>

Community Readiness and Support for Success in Relocating to the New Capital City

By:

Zain Fuadi Muhammad Roziqi Fath¹⁾, Riza Yonisa Kurniawan^{1*)}, Safira Nashirothul Nur Ummah¹⁾, Retno Mustika Dewi¹⁾, Mohamad Zuber Bin Abd Majid²⁾ ¹⁾Faculty of Economic and Business, Universitas Negeri Surabaya, Indonesia ²⁾Universiti Kebangsaan Malaysia, Bangi Selangor, Malaysia ^{*)}Corresponding Author: <u>rizakurniawan@unesa.ac.id</u>

Submission: August 19, 2024; Accepted: March 17, 2025

ABSTRACT: The capital city functions as a hub for government and commerce. Moving Indonesia's capital is expected to minimize the economic gap between Java and other regions while addressing Jakarta's increasing unfitness due to overcrowding, environmental decline, and low living standards. Nonetheless, society's readiness is still an essential concern. This research employed an explanatory method with a retrospective design to investigate how individuals' behaviors, which are influenced by their readiness and support for IKN as an eco-friendly capital, shaped their expectations of IKN as a sustainable city. Our findings underscore the urgency of the situation. The current environmental behaviors of the Indonesian people may not be sufficient for realizing a green city. Immediate action is needed to address this. To succeed, the IKN needs better infrastructure, enhanced public transportation, improved walking pathways, and lifestyle changes that encourage sustainability, like using renewable energy and reducing CO2 emissions.

Keywords: Community Readiness, Social Habits, Society Readiness.

ABSTRAK: Ibukota berfungsi sebagai pusat pemerintahan dan perdagangan. Tujuan pemindahan ibu kota Indonesia adalah untuk meminimalkan kesenjangan ekonomi antara Jawa dan daerah lainnya, sekaligus mengatasi semakin tidak layaknya Jakarta akibat kepadatan penduduk, penurunan lingkungan, dan penurunan standar hidup. Namun demikian, kesiapan masyarakat tetap menjadi perhatian penting. Penelitian ini mengadopsi metode penelitian eksplanatori dengan desain retrospektif untuk menyelidiki bagaimana perilaku individu, yang dipengaruhi oleh kesiapan dan dukungan mereka terhadap IKN sebagai ibu kota ramah lingkungan, membentuk harapan mereka terhadap IKN sebagai kota berkelanjutan. Hasil penelitian mengungkapkan bahwa orang Indonesia menunjukkan perilaku lingkungan yang tidak memadai, sehingga mewujudkan kota hijau menjadi lebih sulit. Untuk berkembang, IKN membutuhkan infrastruktur yang lebih baik, transportasi umum yang lebih baik, dan jalur pejalan kaki yang lebih baik, selain perubahan gaya hidup yang mendorong keberlanjutan, seperti penggunaan energi terbarukan dan pengurangan emisi CO2.

Kata Kunci: Kesiapan Masyarakat, Kebiasaan Sosial, Kesiapan Masyarakat

2620-8849 © 2024 The Author(s). Publihsed by ISEI Purwokerto and Department of Economics and Development Studies Universitas Jenderal Soedirman. This is an open access article under the <u>CC BY-SA 4.0</u> license

INTRODUCTION

The capital city is a government center used by the government to organize and carry out government functions (Rifaid et al., 2023), as well as the center of economic activity, where it is used as the center of economic activity and activity in the country. So that the presence and function of the capital city become clear that its existence is needed to organize and centralize all activities in the country (Song, Pan, et al., 2024; Xue et al., 2023). Moving the capital city of a country is a natural thing to do, this is necessary to consider the national balance (Knutsen et al., 2024; M. Lu et al., 2024; Yusuf et al., 2023a). Some examples of moving the capital cities in the world include those carried out in Brazil, the reason for moving Brazil's capital city from Rio de Janeiro to Brasilia is to reduce the complicated public problems that occur in Rio de Janeiro, as well as to place the capital in the center of the country, not more to the southeast. In Myanmar's situation, the government's stated reason for shifting the capital during Than Shwe's leadership was to tackle the issues of congestion and overcrowding in Yangon. Nevertheless, a crucial reason for this relocation was the military junta's aim to enhance its political authority by separating the government from opposing groups, which often held protests and demonstrations in Yangon (Kurniewicz et al., 2024; Mabin & Harrison, 2023).

For this reason, the Indonesian government through the Draft Law on the National Capital City (RUU IKN) has been prepared by the Special Committee of the IKN Bill and has been approved by the Indonesian House of Representatives (DPR) during the DPR Plenary Meeting held on January 18, 2022, where the draft law was then passed on February 15, 2022, so that it later became Law Number 3 of 2022 concerning the National Capital City (Law 3/2022) instructing to move the capital city from the Special Capital Region of Jakarta to the National Capital of the *Nusantara*, precisely in East Kalimantan. This plan has actually been proposed and initiated since the era of the reign of President Soekarno, Indonesia's first president, but it can be realized and is in the development stage in the era of President Joko Widodo, Indonesia's seventh president. The relocation of Indonesia's capital city is motivated by efforts to reduce economic disparities between Java and other regions and to respond to Jakarta's increasingly inappropriate role as the country's capital. This is due to rapid and uncontrolled population growth, which is exacerbated by environmental degradation, and a decline in quality of life. Therefore, moving the capital city outside Java is expected to accelerate the reduction of economic disparities and increase economic growth in regions outside Java, especially in Eastern Indonesia (Aqsha, 2024; Faizah & Kusumawardani, 2024; Gita et al., 2024; Huda & Yel, 2024).

Planning and spatial planning in the Nusantara Capital City itself is planned to have a modern design and an environmentally friendly design. This was revealed by Myrna Safitri, Deputy for Environment and Natural Resources of the Nusantara Capital Authority, who stated that the development of IKN will fully adopt environmentally friendly clean energy. According to her, this new and renewable energy will be used optimally in the IKN operations, including in the public transportation sector (Laksono & Latief, 2024; Permatasari et al., 2023; Syaban & Appiah-Opoku, 2023). The renewable energy context is aimed at utilizing renewable energy resources and encouraging their potential to 100%, some of the renewable energy in question is such as solar and wind power, which will later be built and can be utilized in IKN. In addition, the concept of 'ten minute city' will be implemented, where people can access all facilities within ten minutes, by prioritizing active mobility, and increasing the use of public transportation to 80% (Akrami et al., 2024; Guzman et al., 2024; Limerick et al., 2023; Syaban & Appiah-Opoku, 2023). In addition, it is expected that electric vehicles will be fully operational in IKN.

So based on the statements from the two paragraphs above, it can be seen that the relocation of the capital city was carried out for equalization and overcoming Indonesia's economic disparities between eastern Indonesia and western Indonesia, so that a capital city was made in the middle of the two regions (Kawasaki & Shimomura, 2024). The design and concept of the new capital city in Indonesia also encourage people to make better use of public facilities and public transportation. The realization of the green city idea, especially regarding the application of renewable energy, stands out as a significant focus in the Indonesian government's strategy for the upcoming capital in East Kalimantan. The administration is diligently striving to integrate sustainable energy options to facilitate the city's growth and ecological objectives. (Ahakwa, 2024; Liu et al., 2024; Song, Pang, et al., 2024). However, if you look at the data obtained from research conducted by which reveals that Indonesians

only walk 3,515 steps out of an average of 5,000 steps by people in the world (Althoff et al., 2017). This shows that Indonesians are lazy and reluctant to walk. Some of the contributing factors are the difficult terrain and the unavailability of access to public transportation. As explained through Gaikindo data, in 2019, in Indonesia the number of motor vehicles operating on the road is categorized as very large with details of 15 million cars and 112 million motorbikes (Husnina et al., 2023). Other sources reveal that the transportation sector contributes around 70-80% of outdoor air pollution, especially in major cities such as Jakarta. This has led to a number of problems such as air pollution levels that continue to grow every year (Febriani et al., 2023; Gultom et al., 2024; Naryono, 2023). So with the new capital being offered, will it encourage people to move to the new capital and create environmental problems and thwart the concept and design of a green capital in Indonesia?

Information from the third paragraph shows that people in Indonesia find it challenging to keep their surroundings clean and eco-friendly or to embrace the idea of green cities in the new capital (Astriani et al., 2023; Muthalib et al., 2023; Sungkawati, 2024). Therefore, his study examines their readiness for the capital relocation and their willingness to support the green capital plan in East Kalimantan. It also explores the link between habits like walking and using public transport with the green capital status of the new city. In addition, this research will try to answer the relationship between habits such as walking and traveling by public transportation of Indonesian people in correlation with the status that will be carried by the new Indonesian capital, namely 'green capital'.

METHODS

This study employs quantitative research methods, utilizing questionnaires as research instruments. The purpose of using quantitative research methods is to reveal the relationship between two to three variables in this study (Alshurideh et al., 2023; Harefa et al., 2023). Furthermore, this research expects to able and succeed in revealing two research objects directly. This research is also included in explanatory research with an *ex post facto* design, with the aim of trying to explain the causal relationship between the influence of people's habits mediated by people's readiness and support for IKN as Indonesia's green capital and the expectations of IKN projected as a green city in Indonesia.

This study utilizes the most recent data from the Indonesian population, specifically 279,257,630, with an error tolerance of 10% or 0.1. The selection of an error value of 0.1 is attributed to the size of the population. This ensures that the anticipated error and tolerance value set are also sufficiently large. Thus, in this research, are use random sampling method. The Taro Yamane formula determined the number of samples in this study to be 100. The calculations were conducted at points (1) to (5). (Prasetya & Nawangsari, 2019; Yudiawan et al., 2021).

$$n = \frac{N}{1+N(e)^2} \dots (1)$$

$$n = \frac{279,257,630}{1+279,257,630(0.1)^2} \dots (2)$$

$$n = \frac{279,257,630}{1+2,792,576.3} \dots (3)$$

$$n = \frac{279,257,630}{2,792,577.3} \dots (4)$$

$$n = 99.9999641908 \dots (5)$$

In visualizing this research, it can be illustrated through Figure 1 about the research flow as follows:

EKO-REGIONAL, Vol 20, No. 1, Maret 2025. pp. 43-58

Figure 1. Flowchart

Based on the research flow in the first stage is the introduction to the problem. The problem in this research itself is that there is a gap between the expectations of the Indonesian government which wants to make IKN Nusantara a capital with the title of green capital in the future and the cultural patterns and habits of the Indonesian people who tend to contradict these expectations. So in this case an analysis of the problem is carried out and is included in the second stage of this research. As a follow-up plan for investigating and solving problems in this research, quantitative research is carried out to find out the solution to these problems, which will be carried out in the third to fourth stages of this research. So that the conceptual model in this study is presented in figure 2 of the conceptual model as follows.

While the measurement variables in this study will be presented in table 1 related to measurement variables.

Table 1. Measurements o	of the V	'ariable
-------------------------	----------	----------

Variable	Operational Definition	Indicator	Measurement Scale
Variable Social Culture (X1)	Operational Definition In this study, social culture also refers to the habits of the community are their habits in maintaining health as well as the	Indicator1. Physical activities2. Social capital3. Inclusivitybuiltenvironment4. Quality of the built	Likert scale 1-5 • 1 = Strongly Disagree • 2 = Disagree
	level of human resources and social capabilities of the community according to research from	environment	4 = Agree5 = Strongly Agree

	(Masoom, 2024; Mepparambath et al., 2024)		
Community Readiness (M)	Community readiness, in this case, is a composite index of various indicators whose use is intended to measure various key dimensions of the achievement of basic capabilities by the population. (Fath & Putri, 2023; Salmasauzan Ramadhantie et al., 2021)	 Availability of green land Air quality Population density 	Likert scale 1-5 1 = Strongly Disagree 2 = Disagree 3 = Undecided 4 = Agree 5 = Strongly Agree
IKN as Green City (Y)	The green city in this research refers to people's expectations in realising the green city as well as the government's ability to increase people's desire for mobility to the new capital city of Indonesia according to research conducted by (Wang & Xu, 2024; Yusuf et al., 2023b)	 Society expectation Facilities that built Green facilities expectation Community support Public figures influence 	 Likert scale 1-5 1 = Strongly Disagree 2 = Disagree 3 = Undecided 4 = Agree 5 = Strongly Agree

Community Readiness and Support for (Kurniawan, et.al)_____

Source: Data Process, 2024

The hypothesis in this study is based on research by Masoom (2024), Wang & Xu (2024), and Yusuf et al (2023) related to social capital which has been shown to have a significant influence on the fulfilment of the quality of natural resources in the surrounding environment such as the availability of facilities and infrastructure built in the community's living environment. So this encourages researchers to further investigate whether the expectation of fulfilling the needs of these facilities and infrastructure will have a significant impact on the habits of the current Indonesian people regarding the relocation of the new capital and the concept of smart and green cities promoted by the government.

So that researchers use methods and connect between people's habits and expectations of IKN as a green city and mediated by community readiness. As variable measurements as presented in table 2.1. Thus, it can be known and used equation (1) as follows to determine the data analysis and measurement of each variable.

$$Y = a_1 + c^1 X + b M \dots (1)$$

Furthermore, to find out the most significant variables, the help of WarpPLS software is used to find out.

RESULTS AND DISCUSSIONS

This study uses the object of questionnaire research with the number of questions as many as 15 questions that will measure variable X1, then 8 questions to measure variable M, and 5 questions to measure variable Y. so that the total questions in the questionnaire in this study are as many as 28 questions. The subjects of this study consist of individuals who reside in Indonesia or are employed

there, and their ages range from 17 to over 60 years old. Additionally, they must have completed at least junior high school. The subjects in this study specifically target Indonesians who are interested in moving to live in IKN or the new capital. The number of respondents in this study is as many as 100 respondents, based on calculations intended in the research method, about population and sampling using the Slovin calculation method.

		Table 2. Converger	nt Validity Test Re	esult	
No	Indicator	Factor Loading	Description	P Value	Description
1	X1.PA1	0.094	Not Fulfilled	<0.001	Fulfilled
2	X1.PA2	0.320	Fulfilled	< 0.001	Fulfilled
3	X1.PA3	0.224	Not Fulfilled	<0.001	Fulfilled
4	X1.PA4	0.214	Not Fulfilled	< 0.001	Fulfilled
5	X1.PA5	0.498	Fulfilled	< 0.001	Fulfilled
6	X1.SC1	0.620	Fulfilled	< 0.001	Fulfilled
7	X1.SC2	0.685	Fulfilled	<0.001	Fulfilled
8	X1.SC3	0.648	Fulfilled	<0.001	Fulfilled
9	X1.SC4	0.534	Fulfilled	0.005	Fulfilled
10	X1.SC5	0.566	Fulfilled	<0.001	Fulfilled
11	X1.FM1	0.575	Fulfilled	0.197	Not Fulfilled
12	X1.FM2	0.469	Fulfilled	<0.001	Fulfilled
13	X1.FM3	0.612	Fulfilled	<0.001	Fulfilled
14	X1.FM4	0.244	Not Fulfilled	<0.001	Fulfilled
15	X1.FM5	0.543	Fulfilled	<0.001	Fulfilled
16	M.R1	-0.083	Not Fulfilled	<0.001	Fulfilled
17	M.R2	0.344	Fulfilled	<0.001	Fulfilled
18	M.AQ1	0.724	Fulfilled	<0.001	Fulfilled
19	M.AQ2	0.642	Fulfilled	<0.001	Fulfilled
20	M.GL1	0.425	Fulfilled	<0.001	Fulfilled
21	M.GL2	0.422	Fulfilled	<0.001	Fulfilled
22	M.PD1	0.534	Fulfilled	<0.001	Fulfilled
23	M.PD2	0.540	Fulfilled	<0.001	Fulfilled
24	Y.SE1	0.428	Fulfilled	<0.001	Fulfilled
25	Y.Fac1	0.579	Fulfilled	<0.001	Fulfilled
26	Y.CS1	0.653	Fulfilled	<0.001	Fulfilled
27	Y.INF1	0.739	Fulfilled	<0.001	Fulfilled
28	Y.RES1	0.804	Fulfilled	<0.001	Fulfilled

The validity and reliability test using WarpPLS are as table 2 about validity and reliability result as follows:

Source: Data Process, 2024

Based on the results of the convergent validity test using WarpPLS software, it is known that the results in table 2 related to the Convergent Validity Test Results are as follows:

In table 2, it is known that there are 5 variables that do not meet the loading factor value in convergent validity testing. These variables are derived from 4 variables X1 and 1 variable M. so that these variables will then be eliminated and not taken into account the involvement and influence significantly in this study. While the interpretation of table 3.1 is as follows.

(1) If the loading factor is on the variable X1. PA2 = 0.320 > 0.300, hence satisfying the convergent variable

(2) If the variable charge is significant (e.g. for X1.1 = 0.808; p<0.001), it satisfies the validity of <0.05

Community Readines,	s and Support for	(Kurniawan, et.al)
---------------------	-------------------	--------------------

Table 3. Discriminant Validity Test Results on X1						
Indikator	Loading	Cross Loading		Description		
	X1	М	Y	_		
X1.PA1	0.094	-0.004	0.231	Not Fulfilled		
X1.PA2	0.320	0.056	0.320	Not Fulfilled		
X1.PA3	0.224	0.263	-0.193	Not Fulfilled		
X1.PA4	0.214	-0.167	-0.134	Fulfilled		
X1.PA5	0.498	0.261	0.134	Fulfilled		
X1.SC1	0.620	0.021	0.064	Fulfilled		
X1.SC2	0.685	-0.143	0.031	Fulfilled		
X1.SC3	0.648	0.203	0.014	Fulfilled		
X1.SC4	0.534	-0.046	-0.124	Fulfilled		
X1.SC5	0.566	-0.284	0.028	Fulfilled		
X1.FM1	0.575	0.085	-0.326	Fulfilled		
X1.FM2	0.469	-0.001	-0.073	Fulfilled		
X1.FM3	0.612	0.005	0.065	Fulfilled		
X1.FM4	0.244	0.116	0.236	Not Fulfilled		
X1.FM5	0.543	-0.205	-0.026	Fulfilled		
	Indikator X1.PA1 X1.PA2 X1.PA3 X1.PA4 X1.PA5 X1.SC1 X1.SC2 X1.SC3 X1.SC4 X1.SC5 X1.FM1 X1.FM2 X1.FM3 X1.FM3 X1.FM4	Indikator Loading X1 X1 X1.PA1 0.094 X1.PA2 0.320 X1.PA3 0.224 X1.PA4 0.214 X1.PA5 0.498 X1.SC1 0.620 X1.SC2 0.685 X1.SC3 0.648 X1.SC5 0.566 X1.FM1 0.575 X1.FM2 0.469 X1.FM3 0.612 X1.FM4 0.244	Indikator Loading Cross L X1 M X1.PA1 0.094 -0.004 X1.PA2 0.320 0.056 X1.PA3 0.224 0.263 X1.PA4 0.214 -0.167 X1.PA5 0.498 0.261 X1.SC1 0.620 0.021 X1.SC2 0.685 -0.143 X1.SC3 0.648 0.203 X1.SC4 0.534 -0.046 X1.SC5 0.566 -0.284 X1.FM1 0.575 0.085 X1.FM2 0.469 -0.001 X1.FM3 0.612 0.005 X1.FM4 0.244 0.116	Indikator Loading Cross Loading X1 M Y X1.PA1 0.094 -0.004 0.231 X1.PA2 0.320 0.056 0.320 X1.PA3 0.224 0.263 -0.193 X1.PA4 0.214 -0.167 -0.134 X1.PA5 0.498 0.261 0.134 X1.SC1 0.620 0.021 0.064 X1.SC2 0.685 -0.143 0.031 X1.SC3 0.648 0.203 0.014 X1.SC4 0.534 -0.046 -0.124 X1.SC5 0.566 -0.284 0.028 X1.FM1 0.575 0.085 -0.326 X1.FM2 0.469 -0.001 -0.073 X1.FM3 0.612 0.005 0.065 X1.FM4 0.244 0.116 0.236		

Source: Data Process, 2024

	Table 4. Discriminant Validity Test Results on M						
No	Indicator	Loading	Cross L	oading	Description		
		М	X1	Y			
1	M.R1	-0.083	-0.045	0.015	Not Fulfilled		
2	M.R2	0.344	0.178	0.366	Not Fulfilled		
3	M.AQ1	0.724	-0.021	0.094	Fulfilled		
4	M.AQ2	0.642	0.179	0.219	Fulfilled		
5	M.GL1	0.425	-0.014	0.291	Fulfilled		
6	M.GL2	0.422	-0.122	-0.066	Fulfilled		
7	M.PD1	0.534	-0.203	-0.137	Fulfilled		
8	M.PD2	0.540	0.001	0.319	Fulfilled		

Source: Data Process, 2024

Table 5. Discriminant Validity Test Results on Variable Y

	Tuble 5. Dis		ity rest nesult		
No	Indicator	Loading	Cross L	oading	Description
		Y1	X1	М	
1	Y.SE1	0.428	0.053	-0.239	Fulfilled
2	Y.Fac1	0.579	-0.256	0.114	Fulfilled
3	Y.CS1	0.653	0.048	-0.067	Fulfilled
4	Y.INF1	0.739	0.030	0.044	Fulfilled
5	Y.RES1	0.804	0.090	0.058	Fulfilled

Source : Data Process, 2024

Based on table 3.2 to table 3.4 it is known that if the value of X1. PA4 with loading 0.214 and cross loading for M1 = -0.167 and Y = -0.134, then the discriminant validity has been fulfilled because the discriminant factor will be fulfilled if loading is greater than cross loading, while if loading is smaller than cross loading, then the discriminant validity is not met. In table 3.2 to table 3.4 there are 6 variables that do not meet the validity of the discriminant. Among the unmet discriminant validities is

the variable X1. PA1, X1. PA2, X1. PA3, X1. FM4, M.R1, and M.R2. So then this variable will not be taken into account for its significant impact on direct or indirect influence testing.

	Table 6. AVE Roots and Their Correlation						
No	Variable	AVE Roots			Description		
		X1	М	Y			
1	X1	0.491	0.642	0.426	Not Fulfilled		
2	Μ	0.642	0.500	0.436	Not Fulfilled		
3	Y	0.426	0.436	0.654	Fulfilled		

. . 1 -

Source: Data Process, 2024

From the results of the AVE root and its correlation, it can be concluded that each variable has a larger AVE root with other variables. This is evidenced in variable Y which has an AVE root of 0.654 which is greater than the AVE root in other variables (M = 0.436 and X1 = 0.426).

		Table 7. Composite Reliability Result	ts
No	Variable	Composite Reliability Coefficients	Description
1	X1	0.805	Fulfilled
2	М	0.677	Not Fulfilled (Can Used)
3	Y	0.782	Fulfilled

Source: Data Process, 2024

Based on the results of composite reliability coefficients in table 7, it is known that all coefficients in variables X1, X2, and Y have been met with conditions (>0.7) so that they exceed the value of the Composite Reliability criterion. h'a Alaba Caaffisianta Dagult

Variable	Cronbach's Alpha Coefficients	Description
X1	0.740	Fulfilled
Μ	0.503	Enough
Y	0.651	Fulfilled
	X1 M	VariableCoefficientsX10.740M0.503Y0.651

Source: Data Process, 2024

Based on table 8 it is known that Cronbach's Alpha results on all variables (X1 = 0.740) and (Y = 0.651) have values greater than 0.600 so that they meet the criteria of Cronbach's alpha coefficients. While in the M value there is a value of 0.503 which does not meet the value of 0.600. However, in this study the value will be used based on research that has been conducted by Amran et al (2024) and Stoykova & Franke (2023) where mentioning that Cronbach's Alpha value of less than 0.600 can be used but with sufficient criteria. Then the model fit and quality indices analyze are as follows:

	Table 9. Model Fit and Quality Indices Analyze					
No	Model Fit and Quality	Fit Criteria	Analyze	Description		
NO	Indices	The Children	Results	Description		
1	Average Path Coefficients	P<0.05	0.400	Fulfilled fit model		
	(APC)		(P<0.001)	requirement		
2	Average R-Squared (ARS)	P<0.05	0.337	Fulfilled fit model		
			(P<0.001)	requirement		
3	Average Adjusted R-	P<0.05	0.326	Fulfilled fit model		
	Squared (AARS)		(P<0.001)	requirement		
4	Average block VIF (AVIF)	Acceptable if <= 5,	1.672	Ideal		
		ideally <= 3.3				

No	Model Fit and Quality Indices	Fit Criteria	Analyze Results	Description
5	Average full collinearity	Acceptable if <= 5,	1.626	Ideal
	VIF (AFVIF)	ideally <= 3.3		
6	Tenehaus GoF (GoF)	Small >= 0.1,	0.321	Medium
		medium >= 0.25,		
		large >=0.36		
7	Simpson's paradox ratio	Acceptable if >=0.7,	1.000	Ideal
	(SPR)	ideally = 1		
8	R-squared contribution	Acceptable if >=	1.000	Ideal
	ratio (RSCR)	0,9, ideally = 1		
9	Statistical suppression	Acceptable if >= 0.7	1.000	Acceptable
	ratio (SSR)			
10	Nonlinear bivariate	Acceptable if >= 0.7	0.833	Acceptable
	causality direction ratio			
	(NLBCDR)			

Community Readiness and Support for (Kurniawan, et.al)_____

Source: Data Process, 2024

Based on table 9 regarding model fit and quality indices analysis, it can be seen that the statistical suppression ratio and nonlinear bivariate causality direction ratio are also acceptable. In addition, the avarage block VIF and average full collinearity VIF, Simpson's paradox ratio and R-Squared contribution ratio also show the ideal at 1.000.

Table 10. Variable Profile							
No	Indicator	Factor Loading	Average	Recommendations for the			
				Government and All Its Layers			
1	X1.PA1	0.094	4,376238	Improved			
2	X1.PA2	0.320	4,148515	Improved			
3	X1.PA3	0.224	4,108911	Improved			
4	X1.PA4	0.214	4,267327	Improved			
5	X1.PA5	0.498	3,970297	Improved			
6	X1.SC1	0.620	3,801980	Improved			
7	X1.SC2	0.685	3,940594	Improved			
8	X1.SC3	0.648	3,811881	Improved			
9	X1.SC4	0.534	4,000000	Improved			
10	X1.SC5	0.566	3,930693	Improved			
11	X1.FM1	0.575	4,138614	Improved			
12	X1.FM2	0.469	3,960396	Maintained			
13	X1.FM3	0.612	3,950495	Improved			
14	X1.FM4	0.244	3,980198	Maintained			
15	X1.FM5	0.543	3,950495	Improved			
16	M.R1	-0.083	4,217822	Improved			
17	M.R2	0.344	3,821782	Improved			
18	M.AQ1	0.724	3,792079	Improved			
19	M.AQ2	0.642	3,881188	Improved			
20	M.GL1	0.425	4,118812	Maintained			
21	M.GL2	0.422	4,148515	Maintained			
22	M.PD1	0.534	4,207921	Maintained			
23	M.PD2	0.540	3,712871	Maintained			
24	Y.SE1	0.428	4,118812	Maintained			
25	Y.Fac1	0.579	4,059406	Maintained			
26	Y.CS1	0.653	3,782178	Improved			
27	Y.INF1	0.739	3,801980	Improved			

Figure 3. Results of Hypothesis Test

In order to explain and show what is shown in Table 10 about the variable profile, it is known that many things need to be made better to help the new capital become a green and smart city in Indonesia and even the world (Barker et al., 2024; C. Lu et al., 2023; Si et al., 2024; Wu et al., 2024). Among them are the increase and support of physical activities, supporting infrastructure, and the responsibility and habits of the community to be responsible for every activity and action (Fuseini, 2024; Gkogkos et al., 2023; Hussain et al., 2024). Some problems such as those referred to by (Althoff et al., 2017) reveal that Indonesians walk less than the average person in any country in the world. Therefore, the community needs to focus more on raising awareness about simple physical activities like walking (Klicnik et al., 2024; Stevens et al., 2024). Of course, increasing physical activities such as walking and other activities requires support from the government in this case to fulfill infrastructure such as the availability of sidewalks and other supporting facilities. (Gyergyay & Jansen, 2023; Yao et al., 2024).

The idea of a green city simply implies an idea of forming city that has a sustainable environment in every aspect of its existence as a city (Bibri, 2020a; Garcia-Lamarca et al., 2021). The green cities aim at green area provision, green transportation, green energy sustainable waste management, and also green construction (Bibri, 2020b; Woon et al., 2023). The primary aims and objectives are to lessen the negative impacts on the environment of large metropolitan areas as well as the achievement of a better quality of life for people (De Guimarães et al., 2020). This is not limited to the physical design of the urban environment, but also the creation of sustainability consciousness among the stakeholders (Bibri et al., 2020; Yıldız et al., 2020). Sustainable cities are tangible goals where it is possible to combine such values as growth and the lack of environmental degradation (Ivars-Baidal et al., 2023; Ragheb et al., 2022).

The green city concept is also connected to several of the United Nations' Sustainable Development Goals (SDGs) that form a global agenda for sustainable development (Kutty et al., 2020; Visvizi & del Hoyo, 2021). Of all the seventeen SDGs, the most relevant to the green city concept is the SDG 11 also known as Sustainable Cities and Communities (Blasi et al., 2022). Urban sustainability, its related ideas of inclusiveness, safety, and resilience are seen with concepts of better city planning, green areas access, and efficient public transportation (Hyder & Haque, 2022). With the implementation of green city practices, the aspects related to pollution, waste management and sustainability of urbanization within the SDG 11 goals will be achieved (Yamasaki & Yamada, 2022).

However, green cities deliver more than just the achievement of the mentioned aspects related to some of the SDGs (Giuliodori et al., 2023; Lorenzo-Sáez et al., 2021). For example, there is Sustainable Development Goal 13, Climate Action, that is implemented through green city projects that call for the decrease in emission of greenhouse gases and enhancement of climate change preparedness and response in cities. Energy conservation and utilization of renewable energy in green cities address SDG-7 "Clean and Affordable Energy". Green cities also minimize the levels of pollution

in the environment apart from the construction of health facilities that ensure that residents gain access to quality and healthy living that adresses SDG-3 also (Chen et al., 2024).

Source : Sustainable Development Goals, 2015 Figure 3. SDGs Point 3, 7, and 13

Observing the legacy of SDGs in green cities clarifies the interconnectedness of various aspects of sustainable development (Bonab, Bellini, & Rudko, 2023; Kellison, 2022). If an urban area avails itself of the conceptual framework of green city, it will be able to achieve multiple objectives in relation to SDGs where every positive change creates a chain reaction both in the physical environment and social/economic milieu of the urban civilization. Green cities prove that sustainable development of urban centers is feasible and should be regarded as a global goal (Satterthwaite, 2021). By integrating green techniques, green cities bring the aspects of sustainability into focus reflecting a better vision to other cities to come up with strategies on how they will support the set goals and objectives under the theme of SDGs, and how they are going to accomplish them by the year 2030 (Sherman et al., 2020b). Secondly, enhancing the community's participation in fundamental activities such as walking contributes to a green city initiative for the new capital (IKN) (Reger et al., 2002; G. Zhao et al., 2024). This, in of itself a fuse into the overarching ideal for A Green City that comprises pillars like Sustainable Urban Planning; Environmental Conservation & Resource Efficiency (Breed A. et al., 2023; Lucchi & Buda, 2022). Green City can also mean including renewable energies, reducing CO2 emissions and promoting ecological traffic methods such as bicycles or walking. It takes improvement in infrastructure, pedestrian pathways and public transportation system to transform IKN into a green city as well as the behavioural change of community members on environmentally friendly living practices (Evans & Hardman, 2023; H. Zhao et al., 2024). A strategy that constitutes IKN as smart and green city model both of Indonesia propercliating beyond boundaries (El-Bouzaidi & Abdoun, 2024;

CONCLUSION

The capital city could be a government center utilized by the government to organize and carry out government capacities as well as the center of financial movement, where it is utilized as the center of financial movement and action within the nation. The migration of Indonesia's capital city is spurred by efforts to decrease financial incongruities between Java and other locales and to reply to Jakarta's progressively unseemly part as the country's capital. Based on the information within the third section, it is known that Indonesians have poor criteria in keeping their environment clean and green, and supporting the green city that will be implanted within the modern Indonesian capital city. So, the reason of this investigation is to illuminate issues related to the preparation of the Indonesian country for the arrangement to move the capital city and to discover out how prepared the community will bolster the green capital arrangement in East Kalimantan with propensities such as strolling and commuting utilizing open transportation that will be brought by the modern capital city of Indonesia, to be specific "green capital". That's why the green city concept needs renewable energies, reducing CO2 emissions and promoting ecological traffic methods such as bicycles or walking. It takes improvement in infrastructure, pedestrian pathways and public transportation system to transform IKN into a green city as well as the behavioral change of community members on environmentally friendly living practices

ACKNOWLEDGEMENT

We are truly grateful to everyone who played a role in this research, including our mentors, peers, and participants for their insightful input and assistance. We extend particular thanks to our organization, relatives, and acquaintances for their steadfast support during this project.

REFERENCES

- Ahakwa, I. (2024). Towards land degradation neutrality: Does green energy and green human capital matter? *Renewable and Sustainable Energy Reviews*, 197, 114396. https://doi.org/https://doi.org/10.1016/j.rser.2024.114396
- Akrami, M., Sliwa, M. W., & Rynning, M. K. (2024). Walk further and access more! Exploring the 15minute city concept in Oslo, Norway. *Journal of Urban Mobility*, *5*, 100077. https://doi.org/https://doi.org/10.1016/j.urbmob.2024.100077
- Alshurideh, M., Kurdi, B., Alhamad, A., Hamadneh, S., Alzoubi, H., & Ahmad, A. (2023). Does social customer relationship management (SCRM) affect customers' happiness and retention? A service perspective. *Uncertain Supply Chain Management*, *11*(1), 277–288.
- Althoff, T., Sosič, R., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. *Nature*, *547*(7663), 336–339.
- Aqsha, M. (2024). Penolakan Fraksi PKS dalam Pengesahan Revisi RUU IKN: Studi Kasus Optimalisasi Wewenang Fraksi dalam Legislasi. *COMSERVA: Jurnal Penelitian Dan Pengabdian Masyarakat*, 3(09), 3658–3667.
- Astriani, V., Yuhan, R. J., & Josaphat, B. P. (2023). Construction of Green City Index in Indonesian Metropolitan Districts/Cities. *Proceedings of The International Conference on Data Science and Official Statistics*, 2023(1), 546–561.
- Barker, A., Garcia-Blanco, G., Garcia, I., & Aguirre-Such, A. (2024). The role of strategic planning in Nature- based Solutions (NBS) transformation: An evaluation of the Green Cities Framework in mainstreaming NBS in 6 European countries. *Nature-Based Solutions*, 6, 100157. https://doi.org/https://doi.org/10.1016/j.nbsj.2024.100157
- Bibri, S. E. (2020a). The eco-city and its core environmental dimension of sustainability: green energy technologies and their integration with data-driven smart solutions. *Energy Informatics*, *3*(1), 4.
- Bibri, S. E. (2020b). The eco-city and its core environmental dimension of sustainability: green energy technologies and their integration with data-driven smart solutions. *Energy Informatics*, 3(1), 4.
- Bibri, S. E., Krogstie, J., & Kärrholm, M. (2020). Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. *Developments in the Built Environment*, *4*, 100021.
- Blasi, S., Ganzaroli, A., & De Noni, I. (2022). Smartening sustainable development in cities: Strengthening the theoretical linkage between smart cities and SDGs. *Sustainable Cities and Society*, *80*, 103793.
- Bonab, A. B., Bellini, F., & Rudko, I. (2023). Theoretical and analytical assessment of smart green cities. *Journal of Cleaner Production*, 410, 137315.
- Breed A., C., Du Plessis, T., Engemann, K., Pauleit, S., & Pasgaard, M. (2023). Moving green infrastructure planning from theory to practice in sub-Saharan African cities requires collaborative operationalization. Urban Forestry & Urban Greening, 89, 128085. https://doi.org/https://doi.org/10.1016/j.ufug.2023.128085
- Chen, S., Duan, X., Chiu, S.-C., & Lin, J.-H. (2024). Insurer hedging amidst the interplay of black and green swans toward SDGs 3 and 7. *Energy Economics*, *135*, 107657. https://doi.org/https://doi.org/10.1016/j.eneco.2024.107657
- De Guimarães, J. C. F., Severo, E. A., Júnior, L. A. F., Da Costa, W. P. L. B., & Salmoria, F. T. (2020). Governance and quality of life in smart cities: Towards sustainable development goals. *Journal of Cleaner Production*, 253, 119926.
- El-Bouzaidi, Y. E. I., & Abdoun, O. (2024). Artificial Intelligence for Sustainable Dermatology in Smart Green Cities: Exploring Deep Learning Models for Accurate Skin Lesion Recognition. *Procedia Computer Science*, 236, 233–240. https://doi.org/https://doi.org/10.1016/j.procs.2024.05.026

- Evans, A., & Hardman, M. (2023). Enhancing green infrastructure in cities: Urban car parks as an opportunity space. *Land Use Policy*, *134*, 106914. https://doi.org/https://doi.org/10.1016/j.landusepol.2023.106914
- Faizah, R., & Kusumawardani, D. (2024). Integrated Interaction Between Tourism, Economy, and Ecology in Indonesia: Coupling Coordination Degree Method. *EKO-REGIONAL: Jurnal Pembangunan Ekonomi Wilayah*. https://doi.org/10.32424/1.erjpe.2024.19.1.3900
- Fath, Z., & Putri, A. (2023). Pengaruh Kualitas SDM dan Polusi Udara terhadap Implementasi Pajak Karbon dalam Mendukung Pembangunan Berkelanjutan di Indonesia. *Prisiding Seminar Nasional Ekonomi Dan Perpajakan*, 26–43.
- Febriani, R. A., Raharjo, M., & Sulistiyani, S. (2023). Effect of the number of transportation modes and industrial closure with air quality on large-scale social restriction during Covid-19 pandemic in Jakarta. *AIP Conference Proceedings*, *2683*(1).
- Fuseini, M. N. (2024). Rural infrastructure and livelihoods enhancement: The case of Community-Based Rural Development Program in Ghana. *Heliyon*, *10*(13), e33659. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e33659
- Garcia-Lamarca, M., Anguelovski, I., Cole, H., Connolly, J. J. T., Argüelles, L., Baró, F., Loveless, S., Perez del Pulgar Frowein, C., & Shokry, G. (2021). Urban green boosterism and city affordability: For whom is the 'branded' green city? *Urban Studies*, *58*(1), 90–112.
- Gita, M. H., Fadhilah, Damayanti, A., & This, J. Soedirman. (2024). Investigating the Effects of Minimum Wage and Non-compliance on Formal Employment: Evidence in Java Island. *EKO-REGIONAL:* Jurnal Pembangunan Ekonomi Wilayah. https://api.semanticscholar.org/CorpusID:269941157
- Giuliodori, A., Berrone, P., & Ricart, J. E. (2023). Where smart meets sustainability: The role of Smart Governance in achieving the Sustainable Development Goals in cities. *BRQ Business Research Quarterly*, *26*(1), 27–44.
- Gkogkos, G., Patsonakis, C., Drosou, A., & Tzovaras, D. (2023). A DLT-based framework for secure IoT infrastructure in smart communities. *Technology in Society*, *74*, 102329. https://doi.org/https://doi.org/10.1016/j.techsoc.2023.102329
- Gultom, S., Nabolon, D., Sarinah, S., Widianto, P., & Sucipto, Y. D. (2024). Analysis of the Impact of the Implementation of the Government's Zero ODOL Policy in 2023 on Commodity Distribution in the Special Capital Region of Jakarta and West Java Provinces. *Dinasti International Journal of Management Science*, *5*(3), 598–620.
- Guzman, L. A., Oviedo, D., & Cantillo-Garcia, V. A. (2024). Is proximity enough? A critical analysis of a 15-minute city considering individual perceptions. *Cities*, *148*, 104882. https://doi.org/https://doi.org/10.1016/j.cities.2024.104882
- Harefa, D., Sarumaha, M., Telaumbanua, K., Telaumbanua, T., Laia, B., & Hulu, F. (2023). Relationship Student Learning Interest To The Learning Outcomes Of Natural Sciences. *International Journal of Educational Research and Social Sciences (IJERSC)*, 4(2), 240–246.
- Huda, C., & Yel, M. B. (2024). Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes. *Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI)*, 7(1), 126–130.
- Husnina, Z., Kinley Wangdi, T., Puspita, S. M. P., & Ni, Z. (2023). PROFILING TEMPORAL PATTERN OF PARTICULATE MATTER (PM10) AND METEOROLOGICAL PARAMETERS IN JAKARTA PROVINCE DURING 2020-2021. *Journal of Environmental Health*, *15*(1).
- Hussain, A., Mandić, A., & Fusté-Forné, F. (2024). Transforming communities: Analyzing the effects of infrastructure and tourism development on social capital, livelihoods, and resilience in Gilgit-Baltistan, Pakistan. *Journal of Hospitality and Tourism Management*, *59*, 276–295. https://doi.org/https://doi.org/10.1016/j.jhtm.2024.04.017
- Hyder, M. B., & Haque, T. Z. (2022). Understanding the linkages and importance of urban greenspaces for achieving sustainable development goals 2030. *J. Sustain. Dev*, *15*, 144.
- Ivars-Baidal, J. A., Vera-Rebollo, J. F., Perles-Ribes, J., Femenia-Serra, F., & Celdrán-Bernabeu, M. A. (2023). Sustainable tourism indicators: what's new within the smart city/destination approach? *Journal of Sustainable Tourism*, 31(7), 1556–1582.

- Kawasaki, A., & Shimomura, N. (2024). Accelerated widening of economic disparity due to recurrent floods. *International Journal of Disaster Risk Reduction*, *102*, 104273. https://doi.org/https://doi.org/10.1016/j.ijdrr.2024.104273
- Kellison, T. (2022). An overview of sustainable development goal 11. *The Routledge Handbook of Sport and Sustainable Development*, 261–275.
- Klicnik, I., Riad Andrawes, R., Bell, L., Manafo, J., Meens Miller, E., Sun, W., Widener, M., & Dogra, S. (2024). Insights from neighbourhood walking interviews using the Living Environments and Active Aging Framework (LEAAF) in community-dwelling older adults. *Health & Place, 89*, 103339. https://doi.org/https://doi.org/10.1016/j.healthplace.2024.103339
- Knutsen, C. H., Morgenbesser, L., & Wig, T. (2024). On the move: Autocratic leaders, security, and
capital relocations. *Political Geography*, *113*, 103154.
https://doi.org/https://doi.org/10.1016/j.polgeo.2024.103154
- Kurniewicz, A., Swianiewicz, P., & Łukomska, J. (2024). Why regional capital status only sometimes enhances the growth of cities: Comparison of 1975 and 1998 Polish reforms. *Cities*, *144*, 104642. https://doi.org/https://doi.org/10.1016/j.cities.2023.104642
- Kutty, A. A., Abdella, G. M., Kucukvar, M., Onat, N. C., & Bulu, M. (2020). A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. *Sustainable Development*, *28*(5), 1347–1365.
- Laksono, N. B., & Latief, Y. (2024). Sustainable Infrastructure Development in The IKN Region (Nusantara Capital): Simulation of The Smart Self-Sustaining Urban Center Area Development. *Smart City*, *4*(1), 3.
- Limerick, S., Hawes, J. K., Gounaridis, D., Cohen, N., & Newell, J. P. (2023). Community gardens and the 15-minute city: Scenario analysis of garden access in New York City. *Urban Forestry & Urban Greening*, *89*, 128107. https://doi.org/https://doi.org/10.1016/j.ufug.2023.128107
- Liu, C., Tang, C., & Liu, Y. (2024). Does the transformation of energy structure promote green technological innovation? A quasi-natural experiment based on new energy demonstration city construction. *Geoscience Frontiers*, 15(3), 101615. https://doi.org/https://doi.org/10.1016/j.gsf.2023.101615
- Lorenzo-Sáez, E., Lerma-Arce, V., Coll-Aliaga, E., & Oliver-Villanueva, J.-V. (2021). Contribution of green urban areas to the achievement of SDGs. Case study in Valencia (Spain). *Ecological Indicators*, *131*, 108246.
- Lu, C., Zhao, P., & Lin, X. (2023). Does green technology innovation contribute to energy efficiency improvement: Empirical evidence from Chinese cities. *Energy Reports*, *9*, 462–473. https://doi.org/https://doi.org/10.1016/j.egyr.2023.04.254
- Lu, M., Ou, H., & Zhong, Y. (2024). Political governance and urban systems: A persistent shock on population distribution from capital relocation in ancient China. *Regional Science and Urban Economics*, *108*, 104034. https://doi.org/https://doi.org/10.1016/j.regsciurbeco.2024.104034
- Lucchi, E., & Buda, A. (2022). Urban green rating systems: Insights for balancing sustainable principles and heritage conservation for neighbourhood and cities renovation planning. *Renewable and Sustainable Energy Reviews*, *161*, 112324. https://doi.org/https://doi.org/10.1016/j.rser.2022.112324
- Mabin, A., & Harrison, P. (2023). Contemporary planning and emergent futures: A comparative study of five capital city-regions on four continents. *Progress in Planning*, *169*, 100664. https://doi.org/https://doi.org/10.1016/j.progress.2022.100664
- Masoom, M. R. (2024). Social capital and health beliefs: Exploring the effect of bridging and bonding social capital on health locus of control among women in Dhaka. *Heliyon*, *10*(7), e28932. https://doi.org/10.1016/j.heliyon.2024.e28932
- Mepparambath, R. M., Le, D. T. T., Oon, J., Song, J., & Huynh, H. N. (2024). Influence of the built environment on social capital and physical activity in Singapore: A structural equation modelling analysis. *Sustainable Cities and Society*, *103*. https://doi.org/10.1016/j.scs.2024.105259
- Muthalib, A., Iswandi, R. M., Putera, A., Harafah, L. O. M., Aswad, N. H., Nur, M., & Koodoh, E. H. (2023). Achievement of Performance and Evaluation of Green City Development Indicators for

Sustainable Cities (SDGs) in 2030. International Journal on Advanced Science, Engineering & Information Technology, 13(4).

- Naryono, E. (2023). THE IMPACT OF ECONOMIC DEVELOPMENT ON ENVIRONMENTAL POLLUTION IN THE CITY OF JAKARTA. Center for Open Science.
- Permatasari, T., Dwimawanti, I. H., & Herawati, A. R. (2023). Analysis of the Policy of Moving the National Capital (IKN) with an Energy Increase Strategy: Readiness of Economic and Public Administration Aspects. *International Journal of Sustainable Development & Future Society*, 1(1), 30–36.
- Prasetya, R. Y., & Nawangsari, L. (2019). The influence of leadership style, organizational culture, and work motivation on organizational citizenship behavior for environment (OCBE) of the directorate general of fiscal balance's employees. *International Journal of Innovative Science and Research Technology*, *4*(12), 641–647.
- Ragheb, A., Aly, R., & Ahmed, G. (2022). Toward sustainable urban development of historical cities: Case study of Fouh City, Egypt. *Ain Shams Engineering Journal*, *13*(1), 101520.
- Reger, B., Cooper, L., Booth-Butterfield, S., Smith, H., Bauman, A., Wootan, M., Middlestadt, S., Marcus, B., & Greer, F. (2002). Wheeling Walks: A Community Campaign Using Paid Media to Encourage Walking Among Sedentary Older Adults. *Preventive Medicine*, 35(3), 285–292. https://doi.org/https://doi.org/10.1006/pmed.2002.1074
- Rifaid, R., Abdurrahman, A., Baharuddin, T., & Kusuma, B. M. A. (2023). Smart city development in the new Capital City: Indonesian government plans. *Journal of Contemporary Governance and Public Policy*, *4*(2), 115–130.
- Sahu, M., Dash, R., Kumar Mishra, S., Humayun, M., Alfayad, M., & Assiri, M. (2024). A deep transfer learning model for green environment security analysis in smart city. *Journal of King Saud University Computer and Information Sciences*, 36(1), 101921. https://doi.org/https://doi.org/10.1016/j.jksuci.2024.101921
- Salmasauzan Ramadhantie, S., Jannah Ramadhan, M., & Alpiyunita Hasibuan, M. (2021). PENGARUH INDEKS PEMBANGUNAN MANUSIA TERHADAP INDEKS KUALITAS LINGKUNGAN HIDUP DI INDONESIA MENGGUNAKAN REGRESI DATA PANEL. *Ekologia : Jurnal Ilmiah Ilmu Dasar Dan Lingkungan Hidup*, 21(1), 35–43. https://journal.unpak.ac.id/index.php/ekologia
- Satterthwaite, D. (2021). Sustainable cities or cities that contribute to sustainable development? In *The Earthscan reader in sustainable cities* (pp. 80–106). Routledge.
- Sherman, J. D., Thiel, C., MacNeill, A., Eckelman, M. J., Dubrow, R., Hopf, H., Lagasse, R., Bialowitz, J., Costello, A., & Forbes, M. (2020). The green print: advancement of environmental sustainability in healthcare. *Resources, Conservation and Recycling*, *161*, 104882.
- Si, R., Wang, Y., Cao, M., & Wen, H. (2024). Does green technology innovation promote green economic growth? –Examining regional heterogeneity between resource-based and non-resource-based cities. *International Review of Economics & Finance, 94*, 103406. https://doi.org/https://doi.org/10.1016/j.iref.2024.103406
- Song, Y., Pan, S., Jin, Y., O'Connor, D., Nathanail, P., Bardos, P., Kang, Y., Zuo, X., Zhang, H., & Hou, D. (2024). Comparative life-cycle sustainability assessment of centralized and decentralized remediation strategies at the city level. *Science of The Total Environment*, *919*, 170908. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170908
- Song, Y., Pang, X., Zhang, Z., & Sahut, J.-M. (2024). Can the new energy demonstration city policy promote corporate green innovation capability? *Energy Economics*, *136*, 107714. https://doi.org/https://doi.org/10.1016/j.eneco.2024.107714
- Stevens, W. R., Anable, N. R., Barrett, C., Jeans, K. A., & Podeszwa, D. A. (2024). Investigating the association between self-reported physical function, temporo-spatial parameters, walking kinematics and community-based ambulatory activity: Analysis of post-operative hip preservation patients. Gait & Posture, 113, 53–57. https://doi.org/https://doi.org/10.1016/j.gaitpost.2024.05.027
- Sungkawati, E. (2024). Opportunities and Challenges: Adopting "Blue-Green Economy" Terms to Achieve SDGs. *Revenue Journal: Management and Entrepreneurship*, 2(1), 1–13.
- *Sustainable Development Goals*. (2015). Https://Sdgs.Un.Org/Goals.

- Syaban, A. S. N., & Appiah-Opoku, S. (2023). Building Indonesia's new capital city: an in-depth analysis of prospects and challenges from current capital city of Jakarta to Kalimantan. *Urban, Planning and Transport Research*, *11*(1), 2276415.
- Van Oijstaeijen, W., Silva, M. F. e, Back, P., Collins, A., Verheyen, K., De Beelde, R., Cools, J., & Van Passel, S. (2023). The Nature Smart Cities business model: A rapid decision-support and scenario analysis tool to reveal the multi-benefits of green infrastructure investments. Urban Forestry & Urban Greening, 84, 127923. https://doi.org/https://doi.org/10.1016/j.ufug.2023.127923
- Visvizi, A., & del Hoyo, R. P. (2021). Sustainable development goals (SDGs) in the smart city: A tool or an approach? (An introduction). In *Smart Cities and the un SDGs* (pp. 1–11). Elsevier.
- Wang, Y., & Xu, Y. (2024). Green Natural Capital, the Environmental Kuznets Curve and Development Financing in the Global South. *IScience*, 109562. https://doi.org/10.1016/j.isci.2024.109562
- Woon, K. S., Phuang, Z. X., Taler, J., Varbanov, P. S., Chong, C. T., Klemeš, J. J., & Lee, C. T. (2023). Recent advances in urban green energy development towards carbon emissions neutrality. *Energy*, *267*, 126502.
- Wu, M., Guo, M., & Xu, J. (2024). The influence of smart city policy on urban green energy efficiency A quasi-natural experiment based on 196 cities. *Journal of Cleaner Production*, 449, 141818. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.141818
- Xue, Q., Wang, H., Ji, X., & Wei, J. (2023). Local government centralization and corporate ESG performance: Evidence from China's county-to-district reform. *China Journal of Accounting Research*, *16*(3), 100314. https://doi.org/https://doi.org/10.1016/j.cjar.2023.100314
- Yamasaki, K., & Yamada, T. (2022). A framework to assess the local implementation of Sustainable Development Goal 11. *Sustainable Cities and Society*, *84*, 104002.
- Yıldız, S., Kıvrak, S., Gültekin, A. B., & Arslan, G. (2020). Built environment design-social sustainability relation in urban renewal. *Sustainable Cities and Society*, *60*, 102173.
- Yudiawan, A., Sunarso, B., & Sari, F. (2021). Successful Online Learning Factors in COVID-19 Era: Study of Islamic Higher Education in West Papua, Indonesia. *International Journal of Evaluation and Research in Education*, 10(1), 193–201.
- Yusuf, A. A., Roos, E. L., Horridge, J. M., & Hartono, D. (2023a). Indonesian capital city relocation and regional economy's transition toward less carbon-intensive economy: An inter-regional CGE analysis. Japan and the World Economy, 68, 101212. https://doi.org/https://doi.org/10.1016/j.japwor.2023.101212
- Yusuf, A. A., Roos, E. L., Horridge, J. M., & Hartono, D. (2023b). Indonesian capital city relocation and regional economy's transition toward less carbon-intensive economy: An inter-regional CGE analysis. *Japan and the World Economy*, *68*. https://doi.org/10.1016/j.japwor.2023.101212
- Zhao, G., Cao, M., & De Vos, J. (2024). Exploring walking behaviour and perceived walkability of older adults in London. *Journal of Transport & Health*, *37*, 101832. https://doi.org/https://doi.org/10.1016/j.jth.2024.101832
- Zhao, H., Gu, B., Zhou, L., Li, X., & Gu, X. (2024). Evaluating the demand for urban green infrastructure:Aresidentialperspective.*Cities*,153,105271.https://doi.org/https://doi.org/10.1016/j.cities.2024.105271