
 
 
 
 
 
Proceeding ICMA-SURE – 2023 
The 5th International Conference on Multidisciplinary Approaches for Sustainable Rural Development 

 
 

9 
 
ISSN: 2808-2702 

Multivariate soft sensor for product monitoring in the 

debutanizer column with deep learning 

I Rosyadi*1, A W Wardhana1, M S Aliim1, R Ediati2, and D Ristiawan1 

1Electrical Engineering Department, Faculty of Engineering, Jenderal Soedirman 

University, Purwokerto, Indonesia 

2Agricultural Engineering Department, Faculty of Agriculture, Jenderal Soedirman 

University, Purwokerto, Indonesia 

 

 

Email: imron.rosyadi@unsoed.ac.id 

 
Abstract. Soft sensors have been proposed extensively for predicting ill-to-measure variables in 

industrial processes. In this study, we developed a multivariate soft sensor for debutanizer 

columns. A soft sensor was proposed to replace the chromatograph-based butane content from 

the debutanizer column. Recently, deep learning methods have been implemented for better 

feature representation of complex systems. We developed an Long Short Term Memory 

(LSTM)-based multivariate soft sensor that can better represent the dynamics of a debutanizer 

column system. Our results show that the univariate LSTM soft sensor performs better than 

previously proposed methods. 

1. Introduction 

The industrial environment includes several hardware sensors. Hardware sensors are vital for monitoring 

and controlling industrial processes. However, in industrial settings, hardware sensors face several 

challenges. Several sensors have low sampling rates when industrial processes require a high data rate. 

Sensor measurements such as gas chromatography can only be performed offline in the laboratory. 

Several measured objects are technically impossible or difficult to access; for example, when an object 

is located at the bottom of a reaction column. Occasionally, industrial processes experience anomalies 

that cannot be detected quickly through existing sensor measurements. 

The sensor itself can experience disturbances or irregularities that are not easily detected. Sensor 

hardware can also be damaged and requires a long time to be replaced. Another challenge is that the 

existing sensor systems cannot provide a comprehensive picture of the state of the process. In the last 

three decades, attempts have been made to solve these problems and challenges using soft sensor 

technology. Soft or virtual sensors are software that can produce hardware-sensor-like signals. 

In recent implementations, there are three soft sensor models: the white-box, black-box, and gray-

box models. The white box model, also known as the model-driven soft sensor, was designed based on 

an understanding of industrial process phenomena. On the other hand, the black-box model is designed 

based on observation (measurement) data from process variables. It is also known as a data-driven soft 
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sensor. In the black-box model, we do not necessarily understand the process. The grey box represents 

a combination (hybrid) of the two methods [1]. 

Soft sensors have been studied and applied in process industries such as oil refining [2], [3], cement 

[4], polymers [2], metallurgy, and bioprocesses [5]. The application of soft sensors in industry is mainly 

for the following purposes [1]: online prediction, process monitoring, fault detection, and sensor fault 

detection. In online prediction, soft sensors predict process variables that are difficult to measure, which 

can be caused by the sensor’s low sampling rates, or because the measurement can only be performed 

offline. Because these variables are related to the quality of the process output, their measurement can 

be replaced with soft sensors. During process monitoring and fault detection, soft sensors monitor the 

state of the process and detect deviations from the normal state of the process. Soft sensors obtain 

multivariate relationships and features from the process states. They can support better decision making 

based on measurements. In sensor fault detection, the soft sensor serves as a backup for the hardware 

sensor, provides an indication in case of hardware sensor failure, and replaces the hardware sensor 

function if needed.  

White-box soft sensors are typically developed using first-principles models (FPM). Soft sensors are 

built based on an extended Kalman filter and adaptive observers [6]. Black-box soft-sensor models have 

recently become more popular than their white-box counterparts. In initial studies, a black-box soft 

sensor model was developed using linear statistical learning techniques such as Principal Component 

Analysis (PCA) [7], Independent Component Analysis (ICA) [8], and Partial Least Square (PLS) [9]. 

Because most industrial processes are not linear, researchers have also developed nonlinear statistical 

models, such as the PCA kernel [10] and PLS kernel [11]. 

Artificial neural networks (ANN) have become popular in soft-sensor development because of their 

superiority in modeling nonlinear systems owing to their nonlinear activation function features. 

However, nonlinear statistical learning methods and artificial neural networks (ANN) have significant 

weaknesses. It exhibits local optima convergence and an inability to obtain high-level representations. 

Therefore, in recent years, researchers have implemented deep learning for use in soft sensors after 

successful application in other fields. With the growth of computational capabilities and developed 

models, deep learning techniques have achieved great success in many applications. The essential 

difference between classical machine learning and the current deep learning methods is the extraction 

of features. The developer should perform feature extraction using classical machine learning before 

applying the learning algorithm. In deep learning, features are automatically learned by an algorithm.  

Based on its training method, deep learning can be grouped into three categories: supervised learning 

(which requires labeled data), unsupervised learning (which does not require labeled data), and semi-

supervised learning (a combination of both). Based on the architecture, Deep Learning can be classified 

into three major groups: unsupervised pretrained networks, convolutional neural networks, and recurrent 

neural networks. Unsupervised pre-trained networks extract features from datasets before they are used 

in other deep-learning models. Convolutional neural networks (CNN) learn higher-order features by 

using convolution techniques. Inside the CNN, several hidden layers represent convolutional filters of 

various sizes and configurations. A pooling layer was added between the convolution layers to reduce 

the spatial dimension of the data representation. Recurrent neural networks are feed-forward artificial 

neural networks that transmit information at each time step. An RNN takes each vector in the input 

vector series and processes it sequentially to maintain the state of the system. RNN have advantages and 

are mainly used in time-series modeling.  

Because deep learning techniques can extract high-level representations of objects, they are suitable 

for soft-sensor development. Some researchers have developed soft-sensor models using deep learning. 

Regression models using the Deep Belief Network (DBN) were developed for the crude oil distillation 

unit in the oil refinery process. The DBN was trained to initialize the parameters in a deep neural network 

[12]. The Denoising Autoencoder (DAE) was trained to obtain the initial value of the deep neural 

network parameters, and a deep neural network was used to estimate the oxygen content of flue gas [13]. 

In [14], a DBN model was used for fault detection. In [15], a hybrid variable-wise weighted stacked 
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autoencoder (HVW-SAE) was proposed for a soft sensor in the debutanizer column process. The 

combination of the DBN method with kernel learning has been used for quality prediction in the polymer 

industry [16]. 

The aforementioned deep learning methods extract high-level representations in the spatial domain 

but ignore the temporal features in the time domain. While chemical processes are usually dynamic, the 

temporal features of the time-series data should be considered. Among the various deep learning 

algorithms, recurrent neural networks (RNN) have more advantages for extracting temporal features 

[17]. However, RNN has the disadvantage of gradient vanishing or gradient exploding; therefore, it 

cannot capture long-term dependencies. The LSTM algorithm was developed to overcome the RNN 

problem by adding gates to the RNN. There are three gates in the LSTM algorithm: the forget gate, 

which provides information from the previous step; the input gate, which provides new information 

from the input; and the update gate, which determines what will be retained at each time step. 

In this study, we report the implementation of the LSTM algorithm as a soft sensor in a debutanizer 

column. We assessed its performance using RMSE, MAE, and MdAPE metrics and compared it to 

previously researched multivariate soft sensors. 

2. Process description 

The debutanizer column is a distillation series in the natural gas liquid (NGL) fractionation process. This 

process aims to produce products for both industrial and domestic consumers. As depicted in Figure 1, 

the debutanizer column seeks to remove the lighter fraction of gasoline. The input of the debutanizer 

column is unstabilized naphtha, with the output being LPG (propane/butane) as the top product and 

gasoline (pentane) as the bottom product [18]. 

x6 x7

x3 x4

x1

x2

x5

Naptha
Debutanizer 

Column

Condenser

LPG

To the next 
column

Light Naptha to 
deisopentanizer  

Figure 1. Diagram of debutanizer column. 

 

Table 1. Process variables in the debutanizer column. 

 Variables  Description 

Input   

  x1 Top-level temperature 
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  x2 Top-level pressure 

  x3 Reflux flow 

  x4 Flow to the next process 

  x5 Temperature at 6th level 

  x6 Bottom level temperature #1 

  x7 Bottom level temperature #2 

Output   

  y Butane (C4) content at the bottom of the debutanizer 

 

The butane (C4) content in the bottom product must be minimized to optimize process performance 

(in this case, maximizing LPG production). This process requires monitoring of the butane content of 

the bottom product. Gas chromatography was used to measure butane volume. Because the hardware 

sensors are located on the overhead of the next column and not on the stream of the lower debutanizer 

column, the measurement causes a time delay of 30-75 minutes [18]. 

We propose a soft sensor to overcome the time delay problem of butane measurement at the bottom 

of the debutanizer column without sensing it directly. We replaced the gas chromatography 

measurement with an inferred soft sensor from the data measurement of the other process variables. The 

process variables used in designing the soft sensor that determine the butane content at the bottom of 

the debutanizer are shown in Figure 1 and Table 1 [18]. 

3. Soft sensor development 

RNN is a popular algorithm for time-series forecasting. The RNN network structure is illustrated in 

Figure 2. Let x(t) be the input vector at t and h(t-1) is the hidden vector at t-1, the next hidden state (h(t)) 

can be calculated as  

 

 𝑓(𝑡) = 𝑡𝑎𝑛ℎ(𝑈𝑥(𝑡) +𝑊ℎ(𝑡 − 1) + 𝑏) (1) 

 

where U and W are the corresponding weights, b is the bias term, and tanh(•) is the hyperbolic tangent 

activation function. The output y(t) can then be computed as an activation function of h(t), with its 

corresponding weight and bias. 
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Figure 2. Structure of the RNN unit inside the RNN. 

 

LSTM is an expansion of a typical recurrent neural network (RNN). LSTM overcomes the difficulty 

of RNN in learning long-term dependencies for prediction by utilizing memory cells to store long-term 

information. By replacing the hidden neuron units of the RNN with LSTM units, the network can handle 

gradient vanishing and explosion problems. As shown in Figure 3, LSTM has three additional gates: the 

input gate, forget gate, and output gate. It also has intermediate states. The gates and states determine 

the information to be held in the network.  

 



 
 
 
 
 
Proceeding ICMA-SURE – 2023 
The 5th International Conference on Multidisciplinary Approaches for Sustainable Rural Development 

 
 

13 
 
ISSN: 2808-2702 

σ σ tanh σ

× +

× ×

tanh

xt-1

ht-1

forget 
gate

input 
gate

output 
gate

σ σ tanh σ

× +

× ×

tanh

xt+1

ht+1

forget 
gate

input 
gate

output 
gate

A
σ σ tanh σ

× +

× ×

tanh

xt

ht

forget 
gate ft

input 
gate it

output 
gate ot

A
  t

ct

 
Figure 3. Structure of LSTM unit inside LSTM network. 

 

As depicted in Figure 3, the input (i(t)), forget (f(t)), output gate (o(t)) and the intermediate state (̃c̃(t)) 

are calculated as following 

 

 𝑓(𝑡) = 𝜎(𝑊𝑓𝑥𝑥(𝑡) +𝑊𝑓ℎℎ(𝑡 − 1) + 𝑏𝑓) (2) 

 𝑖(𝑡) = 𝜎(𝑊𝑖𝑥𝑥(𝑡) +𝑊𝑖ℎℎ(𝑡 − 1) + 𝑏𝑖) (3) 

 𝑜(𝑡) = 𝜎(𝑊𝑜𝑥𝑥(𝑡) +𝑊𝑜ℎℎ(𝑡 − 1) + 𝑏𝑜) (4) 

 �̃�(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥(𝑡) +𝑊𝑐ℎℎ(𝑡 − 1) + 𝑏𝑐) (5) 

 

where W’s are their corresponding weights, b’s are their corresponding bias terms, and tanh(•) is a 

hyperbolic tangent activation function. The intermediate state (c(t)) and the hidden state (h(t)) in the 

LSTM then are updated as 

 

 𝑐(𝑡) = 𝑓(𝑡) ∗ 𝑐(𝑡 − 1) + 𝑖(𝑡)�̃�(𝑡) (6) 

 ℎ(𝑡) = 𝑜(𝑡) ∗ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (7) 

 

where * represents the pointwise multiplication of vectors and tanh(•) is a hyperbolic tangent activation 

function. 
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Performance 
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Figure 4. Flowchart of soft sensor development. 

 

The development of the soft sensor is illustrated in Figure 4. The steps are as follows. First, we used 

a preprocessed dataset from sensors installed in the debutanizer column, and the butane content was 
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measured using the chromatograph gas method [18]. The process variables measured in the debutanizer 

column are represented by x1, x2, x3, x4, x5, x6, and x7, whereas the butane content variable is represented 

by y, as shown in Table 1. There total of 2394 data provided for this research. We used 80% of the 

dataset (1915 data) as the training data and the remaining 20% (479 data) as the testing data. We then 

determined the structure and hyperparameters of the LSTM and trained it on the training data. The 

trained network is then used to predict the output of the testing data. 

To assess the soft sensor performance, three metrics were used: root-mean-squared error (RMSE), 

mean absolute error (MAE), and median absolute percentage error (MdAPE). 

 

 𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ |𝑦𝑖 − 𝑥𝑖|

2𝑛
𝑖=1  (8) 

 𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|
𝑛
𝑖=1

𝑛
 (9) 

 𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|
𝑥𝑖−𝑦𝑖

𝑦𝑖
|) ⋅ 100% (10) 

 

where yi and xi are the real and estimated values, respectively, and n is the total number of data samples. 

4. Result and discussion 

In the training stage, we tested several hyperparameters of the LSTM network. Using the RMSE as the 

metric, we found that the best hyperparameters were an epoch count of 50 and a batch size of 16. We 

then used these hyperparameters as the testing hyperparameters. Figure 4 compares the actual sensor 

read and LSTM soft-sensor predictions. The prediction curve of LSTM was very close to the real value 

of the chromatographic measurements. To better understand the performance of the soft sensor, we 

evaluated its RMSE, MAE, and MdAPE values. The evaluation results are presented in Table 2. 

 

 
Figure 5. Comparison of actual sensor read and LSTM soft sensor predictions. 

 

Table 2. Performance of the developed multivariate LSTM soft 

sensor. 

 RMSE MAE MdAPE 

Multivariate LSTM 0.00498 0.00658 1.53 % 

 

Table 3. Metric comparison between univariate 

ARIMA, univariate LSTM and multivariate LSTM. 
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 RMSE MAE 

Multivariate LSTM 0.00498 0.00658 

TCN [19] 0.0967  

AR-TCN [19] 0.0080  

Dynamic LWPLS [20] 0.0136  

Dynamic IVS-LWLPS [20] 0.0132  

Dynamic JIT-VSW [20] 0.0121  

MW-BN [21] 0.02270  

MW-PLS [21] 0.03810  

TD-BN  [21] 0.01579  

SLSTM [22] 0.01599  

VWSAE-LSR [23] 0.0597 0.0471 

SQAE-LSR [23] 0.0548 0.0435 

SQAE-NN [23] 0.0303 0.0220 

SAE-LSSVM [23] 0.0573 0.0419 

VWSAE-LSSVM [23] 0.0396 0.0342 

SQAE-LSSVM [23] 0.0352 0.0284 

 

Furthermore, to objectively measure the performance of our soft sensor, we compared it with that of 

other soft sensors. Table 3 presents the results. All networks in the table used a dataset similar to that 

provided by Fortuna et al. [18]. Our multivariate LSTM offered the best prediction performance owing 

to its low RMSE and MAE parameters. 

5. Conclusion 

In this study, an LSTM network was developed to model a soft sensor in a debutanizer column. The 

hidden states of the LSTM network store the dynamic representation of multiple sensor variables and 

predict the soft sensor output. The multivariate LSTM soft-sensor architecture performed well, with an 

RMSE of 0.00498, MAE value of 0.00658, and MdAPE value of 1.53%. The results show that the 

proposed network outperforms the recently developed soft sensor in predicting the butane product in a 

debutanizer column. 
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