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Abstract. Synedrella nodiflora (L.) Gaertn and Calyptocarpus vialis Less are members of 

Asteraceae family that morphologically show high similarities. To genetically distinguish 

between them, a particular molecular marker should be employed. This study aims to present 

molecular comparison between both species using a chloroplast DNA marker, i.e. atpB – rbcL 

IGS. A pair of PCR universal primers was used to amplify the marker. Sequence alignment on 

the PCR products reveals longer S. nodiflora sequence in comparison to that of C. vialis. In 

addition, some transversions and transitions are also observed. This suggests that the two 

species exhibit considerable genetic difference despite their similar phenotypic appearance. 

1.  Introduction 

Many members of Asteraceae family are recognized for their potentials as ornamental, medicinal, and 

economic plants[1]. On the other hand, some others are known as invasive weeds[2], resulting in 

significant loss on several crops with respect to productivity[3].  

Some species of Asteraceae family show very high phenotypical similarities causing difficulty in 

differentiating them from each other. For example, Calyptocarpus vialis Less has ever been identified 

as Synedrella vialis (Less.) A. Gray due to its high resemblance to Synedrella nodiflora[4]. 

Nevertheless, S. vialis is now changed into C. vialis [5] and this is the scientifically accepted name for 

the species, while S. nodiflora has taxonomically been the only species of genus Synedrella [6]. 

Relatively many studies on the potentials of S. nodiflora, e.g. as medicinal 

herbs[7],[8],[9],[10],[11], bioinsecticide[12], biofungicide[13], and detoxificant for heavy metals such 

as Cu and Pb[14], have been reported. On the other hand, no study has been performed on C. vialis 

potentials to human life. However, this plant species is often called as straggle daisy because of its 

capacity to grow invasively in various terrestrial habitats[15]. The allelopathy effect of root and leaf 

extracts of C. vialis was reported to strongly inhibit S. Nodiflora[16],[17]. 

Despite its wide distribution over many tropical countries, S. nodiflora showed no genetic 

difference among various altitudes[18], while low genetic difference within S. nodiflora populations in 

Java Island, Indonesia was observed[19]. On the other hand, C. vialis is not only spread over tropical 

regions, but is also distributed throughout subtropical areas as it is native to Mexico or even 

Texas[20].  It seems likely that C. vialis is a self-pollinated species presumably leading to slightly 

floral morphological differences between the populations in Texas and those in Mexico, especially 

concerning anther number and corolla lobe number of disk florets[21]. Yet, these phenotypical 

variations are not sufficiently easy to see unless considerably carefull examination is made. Even the 

difficulty occurs in the case of distinguishing C. vialis and S. nodiflora.          
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The problem with phenotypical discrimination between both species is necessarily overcome by 

means of molecular comparison using particular genetic markers, some of which are those from 

chloroplast genome (cpDNA). This source of molecular markers is maternally inherited in agiosperms 

giving rise to the absence of genetic recombination.  Hence, it can be used properly for assessing both 

intra-specific and inter-specific genetic diversity[22]. An atpB – rbcL intergenic spacer (IGS) is one of 

cpDNA markers commonly used to analyze evolutionary history at lower level, since it is a non 

coding sequence showing high evolution rate[23],[24],[25]. This marker has been used to study 

population genetic structure of some Chinese endemic plant species revealing high connectivity 

among populations[26].  Here we present our study on the genetic comparison between S. nodiflora 

and C. vialis by the use of atpB – rbcL IGS as the molecular marker. It is expected from this study to 

obtain DNA barcoding for the respective species. 

2.  Materials and Methods 

2.1.  Plant sampling and preparation 

The samples of both S. nodiflora and C. vialis were collected randomly from some sites in Banyumas 

Regency, Central Java, Indonesia in May 2020. Five plant individuals were used as samples of the 

respective species, each of which was taken by removing its roots and put the whole plant into a 

plastic bottle formerly filled with some water. This was then grown in the glass house of the Faculty of 

Biology Universitas Jenderal Soedirman. Molecular analysis was performed in the Laboratory of 

Genetics and Plant Breeding of the Faculty of Agriculture Universitas Gadjah Mada. 

2.2.  Genomic DNA extraction and marker amplification 

Genomic DNAs were extracted from the uppermost leaves of the plant samples using CTAB method 

[27].  The extracted DNAs were then used as PCR templates to amplify atpB – rbcL IGS employing a 

pair of universal primers, i.e. 5’ – ACATCKARTACKGGACCAATAA - 3’ as forward primer and 5’ 

- AACACCAGCTTTRAATCCAA - 3’ as reverse primer [28].  Individual PCR reaction was 

performed in a total volume of 10 µl consisting of 2.5 µl genomic DNA; 0.25 µl primers (0.125 µl 

each primer); 5 µl Gotaq green and 2.25 µl NFW. This reaction mixture was then treated in a PCR 

condition as follows: pre-denaturation at 94oC for 3 mins, 33 reaction cycles consisting of denaturation 

at 94oC for 45 secs, primer annealing at 55oC for 45 secs, extension at 72oC for 2 mins respectively, 

followed by final extension at 72oC for 3 mins and storage at 4oC. Visualization of the PCR products 

was performed in a 1.5 % agarose gel electrophoresis using 1X TAE buffer run at 75 Volt, 400 mA for 

40 mins. After ethidium bromide staining, the gel was exposed to UV transiluminator for 

documentation. 

2.3.  DNA sequencing and data analysis  

The PCR products were purified using QIAquick kit (Qiagen, Germany), and were sequenced 

following automated Sanger et al.[29] with terminator labelling. Data on base sequences were edited 

using Bioedit version 7.0.4.1[30] and were checked manually. Sequence alignment was carried out 

using ClustalW [31], which was also implemented in the Bioedit version 7.0.4.1.  

 

3.  Results and Discussion 

All DNA samples were successfully amplified resulting in PCR bands of approximately 800 bp in 

length as depicted in Figure 1. After manual editing the amplicon sequences were trimmed into only 

773 bp long. Blasting to NCBI reveals that those of S. nodiflora samples show 99.74% to 99.87% 

homology with atpB – rbcL IGS sequences of S. nodiflora available in the data base. Meanwhile, 

somewhat lower percentage of homology, i.e. 95.6% to 95.73%, was observed between amplicon 

sequences of C. vialis samples and atpB-rbcL IGS in the NCBI genbank (Table 1). This confirms that 

the PCR products of both S. nodiflora and C. vialis samples are definitely atpB – rbcL IGS. 
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S1 = Synedrella nodiflora 1 

S2 = Synedrella nodiflora 2 

S3 = Synedrella nodiflora 3 

S4 = Synedrella nodiflora 4 

S5 = Synedrella nodiflora 5 

M = 1 kb ladder 

C1 = Calyptocarpus vialis 1 

C2 = Calyptocarpus vialis 2 

C3 = Calyptocarpus vialis 3 

C4 = Calyptocarpus vialis 4 

C5 = Calyptocarpus vialis 5 

800 bp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Amplicons of atpB – rbcL IGS Synedrella nodiflora (L.) Gaertn and 

Calyptocarpus vialis Less 

 

Table 1. Sequence alignment of atpB – rbcL IGS of Synedrella nodiflora (L.) Gaertn and 

Calyptocarpus vialis Less to NCBI data base 

No. Sequence name Acession 

number 

% homology Sequence 

length (bp) Sn Cv 

1 Synedrella nodiflora haplotype 5 rbcL-atpB  KY983545.1 99.87 95.73 860 
2 Synedrella nodiflora haplotype 3 rbcL-atpB  KY983543.1 99.87 95.73 860 
3 Synedrella nodiflora biovar lumajang rbcL-

atpB 

KX096802.1 99.87 95.73 866 

4 Synedrella nodiflora biovar yogya1 rbcL-

atpB  

KX096801.1 99.87 95.73 866 

5 Synedrella nodiflora haplotype 4 rbcL-atpB  KY983544.1 99.74 95.60 860 

Sn = Synedrella nodiflora (L.) Gaertn 

Cv = Calyptocarpus vialis Less 

 

No difference within atpB – rbcL IGS sequences of either S. nodiflora or C. vialis was found. On 

the other hand, as shown in Table 2 slightly shorter atpB – rbcL IGS sequence of C. vialis in 

comparison to that of S. nodiflora was observed due to several deletions. In addition, some base 

substitutions were also found, where transversion occurs more frequently rather than transition. Both 

S. nodiflora and C. vialis atpB – rbcL IGS sequences have now been submitted to NCBI data base for 

accession numbers.    
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Table 2. Sequence differences of atpB – rbcL IGS between Synedrella nodiflora (L.) Gaertn and 

Calyptocarpus vialis Less 

 

No. Species Site (s) Sequence (s) 
Type of 

mutation 

1 Synedrella nodiflora 229 T 
transversion 

 Calyptocarpus vialis 229 G 

2 Synedrella nodiflora 230 T 
deletion 

 Calyptocarpus vialis 230 - 

3 Synedrella nodiflora 406 – 412  ATAGAAA 
deletion 

 Calyptocarpus vialis 405 – 406  - 

4 Synedrella nodiflora 523 C 
transversion 

 Calyptocarpus vialis 515 A 

5 Synedrella nodiflora 609 – 629  TGAAAACATTGAAATAAATAT 
deletion 

 Calyptocarpus vialis 601 – 602  - 

6 Synedrella nodiflora 646 A 
transition 

 Calyptocarpus vialis 617 T 

7 Synedrella nodiflora 661 G 
transversion 

 Calyptocarpus vialis 632 T 

8 Synedrella nodiflora 683 G 
transition 

 Calyptocarpus vialis 653 A 

 

The cpDNA marker atpB – rbcL has also been used previously to distinguish between S. nodiflora 

and another species of Asteraceae, i.e. Eleutheranthera ruderalis. These two species are also 

phenotypically very identical to each other. Nevertheless, by using the molecular marker some genetic 

differences with respect to indels and base substitutions were observed. Overall, the atpB – rbcL IGS 

of S. nodiflora was proven somewhat longer than that of E. ruderalis [32]. Oppositely, when another 

cpDNA marker, i.e. trnT – trnL, was employed to discriminate between both species, the sequence of 

S. nodiflora was found slightly shorter in comparison to that of E. ruderalis [33].   

The atpB – rbcL IGS is a non-coding sequence, which is not responsible for a protein synthesis. 

Hence, it has no any relationship with the existence of some morphological characters observed in the 

plant individuals. Nevertheless, the difference in atpB – rbcL IGS sequences between S. nodiflora and 

C. vialis can potentially be used as DNA barcoding of the respective species. An intergenic spacer 

from cpDNA, i.e. psbA – trnH was used to distinguish several species of Tolpis (Asteraceae)[34], 

while the same cpDNA marker was used to provide an empirical model in the identification of some 

medicinal plant species of Sinosenecio (Asteraceae)[35]. In addition, this cpDNA marker was also 

used to construct phylogenetic tree among some species of Anacyclus (Asteraceae)[36].      

Two morphologically similar genera of Myrtaceae, i.e. Eugenia and Syzygium, have been 

distinguished genetically employing atpB – rbcL IGS. By using this molecular marker, a previously 

confusing species, i.e. Eugenia boerlagei Merr, has now been taxonomically grouped into Syzygium 

rather than Eugenia leading to renaming this species into Syzigium boerlagei. However, this 

replacement is not based on the size of atpB – rbcL IGS, but rather depending on the GC content of 

the marker [37].         

4.  Conclusion  

Despite no direct relationship between atpB – rbcL IGS and the phenotypic characters of both S. 

nodiflora and C. vialis, genetic differences between them were clearly observed. This provides 

potential DNA barcodes for identification of the two species.       
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