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ABSTRACT

Background: Alpha (α)-amylase is a popular pharmacological target for controlling postprandial blood glucose 
levels. The exploration of natural ingredients for drug development is particularly promising. Notably, pomegranate 
(Punica granatum) and celery (Apium graveolens) are rich in phenols and flavonoids, making them potential 
candidates for anti-type 2 diabetes treatments.

Objective: This study aims to identify the most promising derivatives from pomegranate and celery using a 
combined metabolomic and in silico approach.

Methods: The study began by identifying metabolites from the KnapSack database, selecting based on primary and 
secondary metabolites also selecting them based on their pharmacokinetic profile. The selected metabolites were 
then docked with alpha-amylase (PDB ID: 2QV4). Furthermore, the interactions were analyzed using Discovery 
Studio, and toxicity profiles were assessed in silico using ECOSAR and Toxtree software.

Results: The analysis identified punicaflavone and 2-deoxybrassinolide as the compounds with the highest binding 
affinity, at -10.06 kcal/mol and -10.89 kcal/mol respectively, both surpassing acarbose’s -9.33 kcal/mol. These 
compounds interacted with 11 common residues in alpha-amylase, mirroring acarbose’s interactions. In silico 
toxicity analysis revealed that punicaflavone might pose risks to aquatic organisms but does not exhibit potential 
as a genotoxic or non-genotoxic carcinogen. Conversely, 2-deoxybrassinolide displayed moderate toxicity to aquatic 
organisms but was also free from genotoxic and non-genotoxic carcinogenic potential.

Conclusion: Punicaflavone and 2-deoxybrassinolide emerged as the most promising compounds, demonstrating 
strong binding affinities and similar interaction patterns with α-amylase as acarbose. Although both compounds 
may pose risks to aquatic environments, they do not show potential as genotoxic or non-genotoxic carcinogens, 
supporting their further exploration as anti-diabetic agents.
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Introduction
Diabetes mellitus is a chronic metabolic disease 

indicated by raised blood glucose levels, which causes 
severe damage to the heart, blood vessels, kidneys, 

nerves, and even eyes. Type 2 diabetes becomes the 
most common diabetes, usually occurring in adults, 
which happens when the body is resistant to insulin 
or cannot produce enough insulin as needed. Over 
the past three decades, type 2 diabetes has become 
far more common in every country. This led to the 
development of a globally recognized goal to slow 
the rise in diabetes and obesity rates by 2025 [1]. 
An estimated 422 million individuals globally have 
diabetes, with the majority residing in low- and middle-
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income nations. The disease is directly responsible 
for 1.5 million fatalities annually. Indonesia is ranked 
seventh out of ten countries with the highest number 
of people living with diabetes [1-2].

Type 2 diabetes is the most common metabolic 
disorder caused by a combination of two primary 
factors: impaired insulin secretion by pancreatic β-cells 
and the tissues’ inability to respond appropriately 
to insulin [3]. A calcium metalloenzyme called alpha 
(α)-amylase helps the digestive process by breaking 
polysaccharide molecules into glucose, maltose, or 
other smaller molecules. The enzyme raises blood 
glucose levels and induces postprandial hyperglycemia. 
Alpha-amylases (α-1,4-glucan-4-glucanohydrolases), 
which are the main secretory products of the pancreas 
and salivary glands, are responsible for the initial step 
of hydrolysis of complex carbohydrates into a mixture 
of oligosaccharides and disaccharides in the intestinal 
mucosa. Management of type 2 DM by inhibiting 
α-amylase aims to reduce glucose reabsorption in 
the intestine [4]. Because of the success of several 
enzymatic inhibitors in inhibiting this particular 
enzyme, including acarbose, miglitol, and voglibose, 
scientists are now interested in creating potent alpha-
amylase inhibitors. However, these drugs are known 
to have various side effects, for example, bloating, 
intestinal cramps, and stomach pain. Therefore, new 
enzyme inhibitors need to be found to plan and develop 
new antidiabetic medication [4-5].

The potential of natural ingredients as alpha-amylase 
inhibitors can be seen from the structure of the substrate 
that may bind to the alpha-amylase enzyme. The natural 
ligands of alpha amylase are maltooligosaccharides, 
phenyl α-maltoside, nigerose, soluble starch, amylose, 
amylopectin, and β-limit dextrins [6]. The approach 
to finding traditional herbal medicine candidates is 
seen from the possibility of bioactive plant contents that 
can directly and targeted work to reduce blood glucose 
levels. Red pomegranate skin (Punica granatum) from 
the Punicaceae family contains a total phenol content 
of not less than 10.2%, calculated as gallic acid; besides 
celery leaves (Apium graveolens), the Apiaceae family 
contains total flavonoid levels of not less than 11.76%, 
calculated as apigenin [7].

The selection of these two plants was based on the 
content of phenol and flavonoid derivatives, which 
could be potential candidates that interact with alpha-
amylase enzyme as an inhibitor. The high phenol and 
flavonoid content in these two plants is the basis for 

developing antidiabetic herbal medicines. Several studies 
have shown that these two plants have diabetes activity, 
but the development has not been standardized [7-
12]. Research also shows a link between the phenol and 
flavonoid content in plants and antidiabetic activity. The 
combination of these two extracts has the potential to 
develop standardized herbal medicines that have much 
better antidiabetic activity.

The research began with a metabolomics study to 
determine the metabolite profile of red pomegranate 
peel and celery leaves using a metabolomics website. 
The metabolites on the list were selected based on their 
primary and secondary metabolites. Using Lipinski's 
rule of five, secondary metabolites were selected again 
based on the pharmacokinetic profile. In silico analysis 
was carried out to predict antidiabetic activity against 
specific receptors. In silico analysis is also used to 
analyze the toxicity of plant bioactive compounds.

Methods 
Software and database 

This study utilized various software tools, including 
the Windows 10 operating system, GaussView 6.0, 
Gaussian 09, AutoDock Tools 1.5.7, Avogadro 1.2, 
and Biovia Discovery Studio Visualizer 2021 Client. 
Additionally, online resources such as SwissADME 
(https://swissadme.ch/index.php), Protein Data Bank 
(https://rcsb.org.pdb/), the Knapsack database (http://
www.knapsackfamily.com), ECOSAR 2.2, and Toxtree 
v3.1.0 were integral to our research processes.

Metabolite selection
Compounds from red pomegranate (Punica 

granatum) and celery (Apium graveolens) were identified 
using the Knapsack database. The metabolites listed 
were analyzed to differentiate primary metabolite 
derivatives from secondary metabolites. Secondary 
metabolite data were then screened using Lipinski’s 
rule of five to select compounds with favorable 
pharmacokinetic profiles. SMILES codes for each 
compound were entered into SwissADME to evaluate 
their pharmacokinetic characteristics, aligning these 
findings with those from in silico ligand tests.

In silico study 
The enzyme target, human pancreatic alpha-

amylase (PDB ID: 2QV4), was obtained from the Protein 
Data Bank. This protein structure, crystallized with 
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Table 1. Binding energy of secondary metabolites of Punica granatum

No Compound Binding energy 
(kcal/mol) No Compound Binding energy 

(kcal/mol)

1 3-O-Methylellagic acid -6.8 40 Cyanidin -6.99

2 6-Methyl-gamma-ionone -5.82 41 Pomegranatate -6.81

3 7-Hydroxymatairesinol -5.3 42 Pregnenolone -8.29

4 Apigenin -6.67 43 Punicaflavone -10.06

5 6-Methyl-5-hepten-2-one -3.79 44 Punicanyl benzoate -5.52

6 alpha-Terpineol -4.94 45 Punicin -9.14

7 alpha-terpinolene -4.2 46 Quercetin -6.77

8 3,3’-di-O-Methylellagic acid -6.46 47 Quinic acid -3.41

9 alpha-Zearalanol -6.63 48 Resveratrol -6.46

10 alpha-Zearalenol -6.55 49 Urolithin A -6.32

11 Arctigenin -7 50 Urolithin A 3-glucuronide -7.47

12 Ascorbic Acid -3.53 51 Urolithin B -6.17

13 3,3’,4’-tri-O-methylellagic acid -6.73 52 Urolithin B glucuronide -6.74

14 4-Terpineol -4.33 53 Epicatechin -6.74

15 4,4’-Di-O-methylellagic acid -6.35 54 Matairesinol -6.9

16 alpha-Estradiol -7.49 55 Menthol -5.18

17 Daidzein -6.58 56 Nortrachelogenin -7.25

18 Daidzein 6’’-O-acetate -7.53 57 Secoisolariciresinol -6.63

19 Isourolithin A -6.64 58 Catechin -6.68

20 Isourolithin B -5.95 59 Dihydrokaempferol -6.53

21 Kaempferol -6.42 60 Lariciresinol -7.57

22 Asiatic acid -8.5 61 Pinoresinol -7.75

23 beta-Myrcene -3.84 62 linalool -4.47

24 beta-Zearalenol -7.38 63 Lirioresinol B -7.46

25 Biochanin A -7.74 64 Luteolin -6.82

26 Brevifolin -4.7 65 Medioresinol -7.39

27 Brevifolincarboxylic acid -4.95 66 Melatonin -6.21

28 Butanoic acid -2.58 67 Naringenin -6.49

29 Caffeic acid -4.47 68 Naringenin chalcone -6.58

30 Caffeine -4.14 69 (-)-Epicatechin -7.27

31 Capric acid -2.96 70 (-)-Matairesinol -6.49

32 Caproic acid -2.3 71 (-)-Menthol -4.69

33 Chrysin -6.91 72 (-)-Nortrachelogenin -7.25

34 cis-p-Coumaric acid -4.22 73 (-)-Secoisolariciresinol -6.63

35 Citric acid -1.15 74 (+)-Catechin -4.63

36 Citronellol -4.31 75 (+)-Dihydrokaempferol -6.53

37 Coumaric acid -4.03 76 (+)-Lariciresinol -7.57

38 Coumestrol -6.88 77 (+)-Pinoresinol -7.75

39 Coutaric acid -3.85
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Table 2. Binding energy of secondary metabolites of Apium graveolens

No Compound Binding energy 
(kcal/mol) No Compound Binding energy 

(kcal/mol)

1 Quercetin -6.77 20 (2E)-2-Nonenal -3.76

2 (+)-Camphor -4.92 21 (3E,5Z)-1,3,5-Undecatriene -4.05

3 Celephthalide C -5.2 22 (E)-2-Decenal -3.33

4 (-)-alpha-Cadinol -6.16 23 (E)-Ferulic acid -3.47

5 Celereoin -6.85 24 (R)-(+)-Verbenone -5.22

6 4-Terpineol -4.33 25 1-Octen-3-yl acetate -3.77

7 Celereoside -7.46 26 1-Tetradecene -3.18

8 Celerin -5.88 27 Osthenol -6.1

9 Celerioside A -8.12 28 Angelicin -5.3

10 Celephthalide A -6.42 29 Apigenin -6.67

11 Celerioside B -7.35 30 Apigravin -5.03

12 Quinic acid -3.41 31 Apiol -4.22

13 Sapienic acid -3.95 32 Aspidinol -5.26

14 Scopoletin -4.95 33 beta-Eudesmol -6.97

15 2-Deoxybrassinolide -10.89 34 beta-Ionone -5.97

16 (-)-2,3-Dihydro-9-O-beta-
glucosyloxy-2-isopropenyl-7H-
furo[3,2-g][1]benzopyran-7-one

-7.29 35
36
37

beta-Myrcene
beta-Phellandrene 
Senkyunolide A

-3.84
-4.68
-5.11

17 (-)-Elemol -6.09 38 Senkyunolide J -5.3

18 (-)-Epicatechin -7.27 39 Senkyunolide N -5.65

19 (+)-Catechin -4.63 40 Xanthotoxin -5.49

acarbose and resolved via X-ray diffraction to 1.97 Å, 
showed no mutations. Protein preparation involved 
using AutoDock Tools 1.5.7, with acarbose re-docked 
to validate the procedure.

Ligand preparation 
Three-dimension structures of the compounds 

were optimized using GaussView 6.0 and the Density 
Functional Theory (DFT) method with the B3LYP/6-31G 
basis set. Optimization outputs, saved in .log format, 
were converted to PDB files using Avogadro software. 
Ligands were then docked with the target protein, 
setting the docking grid dimensions at x = 12.942, y 
= 47.17, z = 26.2, and grid sizes of x = 42.0, y = 34.0, 
z = 32.0. A total of 100 poses were analyzed for each 
ligand-protein interaction, visualized using Discovery 
Studio 2021 Client.

Toxicity analysis 
To predict potential toxicity in aquatic organisms 

(fish, daphnids, and green algae), ECOSAR software 

was employed. Additionally, Toxtree v3.1.1 was used 
to assess the carcinogenicity and mutagenicity of the 
compounds.

Results
Metabolite selection

This study collected 455 and 311 metabolites from 
the KnapSack database for P. granatum and A. graveolens, 
respectively.

Molecular docking
The model validation analysis with acarbose 

showed a binding energy of -9.33 kcal/mol. 
The molecular docking study revealed that the 
compound punicaflavone from Punica granatum and 
2-deoxybrassinolide from Apium graveolens were the 
most promising metabolites, as indicated by their 
lowest binding energy value of -10.06 kcal/mol and 
-10.89 kcal/mol respectively lower than acarbose. 
The binding energy values for each ligand from two 
species are presented in Table 1 and Table 2. 
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Punicaflavone bind to protein by Van der Waals 
bonds on amino acid residues Phe256, His201, Tyr151, 
Ile235, Arg195, Pro64, Trp58, Gly306, and Thr163 
(Figure 1A). Other interactions are known, such as 
conventional hydrogen bond (Glu233, His101, Tyr62, 
and Gln63), unfavorable donor-donor (His305), Pi-
anion (Asp300), Pi-Pi stacked (Trp59), alkyl (Leu162), 
and Pi-alkyl (Leu165). 2-deoxy brassinolide binds 
to protein by Van der Waals bonds on amino acid 
residues Lys200, Ile235, Asn298, Asp300, Arg195, 
His305, Gly104, Thr163, Asp197, and His101 (Figure 
1B). Other interactions are known, such as conventional 
hydrogen bond (Glu233 and Gln63), carbon-hydrogen 
bond, Pi-sigma (Tyr62), alkyl (His201, Ala198, Leu162, 
and His299), and Pi-alkyl (Trp59, Leu165, Trp58, and 
Tyr62). Acarbose binds to protein by Van Der Waals 
bonds with Thr163, Gln63, His299, Trp58, and His305. 
It interacted with conventional hydrogend bond with 
Arg195, Pi-alkyl (Leu165), Pi-Pi stacked (Trp59), alkyl 
(His101), and Pi-anion (Glu233, Asp197, Asp300, Tyr62).

There are many amino acid residues in common in 
punicaflavone, 2-deoxy brassinolide, and acarbose in 
interactions with alpha-amylase such as Glu233, Asp300, 

Tyr62, Gln63, His101, Arg195, Trp59, Leu165, Trp58, 
Thr163, and His305. Although some of the types of 
interactions are different, these results show similarities 
in the important amino acids for interaction. The most 
likely interactions are Van der Waals, conventional 
hydrogen bond, and pi-anion interaction. It has been 
shown that Glu233 and Asp300 function as catalytic 
residues in alpha-amylase hydrolytic processes. Tyr62 
has also been demonstrated to be a crucial residue for 
binding some chalcones to the active site of alpha-
amylase. Based on the interaction in Figure 1, ether 
and alcohol groups are important for interaction with 
Glu233, Asp300, and Tyr62. 

Environmental and organism toxicity prediction
Acarbose is predicted to fall into the category of 

low acute toxicity because all LC50 and EC50 values are 
more than 100 mg/L and low chronic toxicity because 
all ChV values are more than 10 mg/L (Table 3). So, 
acarbose is safe for the aquatic environment in fish, 
daphnids, and green algae. Punicaflavone, potential 
compound of Punica granatum for antidiabetic, has high 

Figure 1. Visualization interaction of compound sand protein target. (A) Interaction between punicaflavone and 2qv4, (B) 
interaction between 2-deoxybrassinolide and 2qv4, (C) interaction between native ligand (acarbose) with 2qv4
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acute and chronic toxicity in the aquatic environment 
because all LC50 and EC50 values are less than 100 mg/L 
dan all ChV values are less than 10 mg/L. Meanwhile, 
2- Deoxybrassinolide, potential compound of Apium 
graveolens, categorized as moderate acute and chronic 
toxicity.

Human body toxicity prediction
Punicaflavone was predicted not to be included in 

class 2, while 2-Deoxybrassinolide was predicted to be 
included in class 2, same as standard acarbose (Table 4).

Discussion
KnapSack is a database that describes the 

interactions between species and their metabolites. 
It is important for metabolomics research since it 
systematically examines massive quantities of organic 
molecules with known or unknown structures [13]. Due 
to a decline in the number of new drug approvals and 
skyrocketing costs, new drug innovation is experiencing 
significant difficulties. Combinatorial chemistry’s 
introduction raised hopes for improved new chemical 
entities (NCEs) success rates; however, despite this 
advancement in science, the rate of new drug discovery 
success has remained unchanged [14].

SwissADME was utilized to conduct pharmacokinetic 
parameter testing on plant secondary metabolite 

chemicals based on Lipinski’s rule of five. Lipinski’s 
rule includes a molecular mass of less than 500 Da, 
a maximum of 5 hydrogen bond donors, a maximum 
of 10 hydrogen bond acceptors, and an octanol-water 
partition coefficient log P of no higher than 5[15]. 
Lipinski’s rule can ascertain a ligand’s physicochemical 
characteristics and a compound’s hydrophobic/
hydrophilic characteristics when it diffuses passively 
through cell membranes [16]. Based on selection 
for secondary metabolites only and selection based 
on pharmacokinetic profile, 77 compounds from 
pomegranate and 40 compounds from celery were 
analyzed using molecular docking.

In drug discovery, molecular docking analysis is 
a basic and important method for predicting the 
interactions that stabilize a protein-ligand complex 
in its bound state [17]. This technique is unique in 
its ability to achieve accurate predictions of activity 
and to model specific structural interactions [18]. In 
addition, molecular docking is useful for examining 
how inhibitors interact with a protein’s active site [19]. 
The primary metric evaluated in molecular docking is 
the free binding energy (∆G). This value is calculated by 
summing the final intermolecular energy, total internal 
energy, and torsional free energy. From this total, the 
energy of the unbound system is subtracted to derive 
the free energy (G) of the system. A more negative ∆G 
value indicates stronger bond stability, enhancing the 

Table 3. Environment and organism toxicity prediction (using ECOSAR)

Compound Fish LC50 
96 h

Daphnid LC50 
48 h

Green algae 
EC50 96 h Fish ChV Daphnid ChV Green  

algae ChV

Acarbose (standard) 5.99E+11 1.34E+11 2.13E+09 1.95E+10 9.81E+08 7.02E+07

Punicaflavone 0.4960046 0.37724 0.940896 0.06844 0.082981 0.472402

2-Deoxybrassinolide 5.258984 3.615673 5.94055 6.44E-01 0.600516 2.382078

Table 4. Human body toxicity prediction (using Toxtree)

Compound Cramel 
rules Kroes TTC

Benigni/Bossa Rulebase

Genotoxic Non-genotoxic Mutagenic Carcinogen 
potential

Acarbose (standard) Class 3 Class 2 - - - -

Punicaflavone Class 3 Class 1 - - - -

2-Deoxybrassinolide Class 3 Class 2 - - - -
Information:
 (+) = Positive change / toxic
 (-) = Negative chane / nontoxic
 Mutagenic = Potential S. typhymurium TA100 mutagen based on QSAR
 Carcinogen potential = Potential carcinogen based on QSAR
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likelihood of a significant binding interaction between 
the ligand and its receptor [20]. Furthermore, variations 
in ∆G can arise due to different interactions between 
the ligand and the amino acids in the target protein’s 
active site [21].

Toxicity prediction using ECOSAR v2.2 to predict 
acute and chronic toxic properties of compounds 
contained in pomegranate and celery. Prediction 
of acute and chronic toxicity is important in the 
environment, especially to identify the impact of 
chemical compounds or pollutants on freshwater 
environments and the organisms that exist in 
them. Acute toxicity is the toxic effect that occurs in 
organisms after exposure to compounds in a short 
period. Acute toxicity can be assessed based on 
LC50 and EC50 values, which indicate the compound 
concentration required to kill 50% of a given population 
of organisms. Meanwhile, chronic toxicity is a toxic 
effect that occurs in organisms after exposure to 
compounds over a long period. Chronic toxicity can 
be assessed based on the ChV (chronic value), which 
indicates the level of exposure to a compound that 
does not cause significant harmful effects on certain 
organisms over a longer period [22].

The term “carcinogenicity” describes a substance’s 
capacity to cause cancer in experimental animals and 
humans, either genotoxic or non-genotoxic. In this 
study, we used the Benigni/Bossa rules, Caramel rules, 
and Kroes TTC as the foundation for the Toxtree rule-
based paradigm. Toxtree shows the structural alerts for 
genotoxic and non-genotoxic carcinogenicity if present 
in the input compound [23].

In Cramel rules parameters, compound toxicity is 
classified into three classes, namely low (class 1), 
medium (class 2), and high (class 3) toxicity. The 
acarbose as a standard was predicted to belong to class 3, 
while the two potential compounds, both punicaflavone 
and 2-deoxybrassinolide, were predicted to belong to 
class 3 [22]. There are two categories in Kroes TCC 
decision parameter: class 1 for compounds that are 
negligible risk (low chance of lifetime cancer risk 
more than 1 in 1,000,000), and class 2 for compounds 
that would not be expected to be a safety concern. 
Punicaflavone was predicted not to be included in 
class 2, while 2-Deoxybrassinolide was predicted to be 
included in class 2, the same as standard acarbose.

Based on carcinogenicity (genotoxicity and non-
genotoxicity) and based on mutagenicity by ISS, the test 
compounds were classified into seven classes: structure 

alert for genotoxic carcinogens (class 1), structure 
alert for nongenotoxic carcinogens (class 2), potential 
mutagen of Salmonella typhimurium TA100 (QSAR 
or Quantitative Structure Activity Relationship) (class 
3), not potential mutagen of Salmonella typhimurium 
TA100 based on QSAR (class 4), potential carcinogen 
based on QSAR (class 5), not potential carcinogen 
(QSAR) (class 6), negative genotoxic carcinogen 
(class 7), negative non-genotoxic carcinogen (class 
9). Both punicaflavone and 2-deoxybrassinolide 
compounds do not have structures that can increase the 
potential of genotoxic and non-genotoxic carcinogens. 

This in silico screening shows the potential 
for developing pomegranate or celery isolate 
compounds as new lead compounds for alpha-
amylase inhibitors. These two plants are still being 
analyzed in extract form, and punicaflavone and 
2-deoxybrassinolide have not been analyzed. Therefore, 
it is still essential to continue developing isolation of 
compounds to be analyzed in vitro and in vivo for their 
activity and toxicity.

Conclusion
The results showed that punicaflavone and 

2-deoxybrassinolide were the most promising 
compounds, with the highest binding affinity 
values of -10.06 kcal/mol and -10.89 kcal/mol, 
respectively, compared to -9.33 kcal/mol for 
acarbose. The interactions showed that there are 11 
common residues and the same interaction between  
punicaflavone, 2-deoxybrassinolide, and acarbose 
with α-amylase. Toxicological analysis revealed 
that punicaflavone may be toxic to aquatic organisms  
but is not a potential genotoxic and non-genotoxic 
carcinogen. 2-Deoxybrassinolide is moderately toxic 
to aquatic organisms and has no genotoxic and  
non-genotoxic carcinogenic potential. These two 
compounds are potential for further development as 
candidates for alpha-amylase inhibitors.

Acknowledgment 
This research is supported by funding from the 

2023 Ministry of Education, Culture, Research, and 
Technology Grant No.113/E5/PG.02.00.PL/2023.

Conflict of interest 
There is no conflict of interest in this research

https://doi.org/10.20884/1.api.2023.11.2.11704


In silico screening of pomegranate (Punica granatum) and celery (Apium graveolens)Auli et al (2023)

Acta Pharmaciae Indonesia: Acta Pharm Indo 11(2): 11704
https://doi.org/10.20884/1.api.2023.11.2.11704 8

Author contributions
WNA, SA, DDAK, AE, APJ, and AYHM wrote the 

initial manuscript; and all authors contributed to data 
interpretation and final approval of the manuscript.

Received: March 27, 2024
Revised: April 27, 2024
Accepted: April 29, 2024
Published online: April 30, 2024

References
1  WHO. (2022). Diabetes. https://www.who.int/healthtopics/

diabetes? gclid=Cj0KCQiA 1rSsBhDHARIsANB4EJY0_
Y6ecKccRdbcbZaTyfTVXY6WEvAkmD0Ltd_vGEhwZ40kuKzBH-
EaAqsWEALw_wcB#tab=tab_1

2  Infodhtin Republik Indonesia. (2020). Tetap Produktif, Cegah, 
dan Atasi Diabetes Melitus. Kementerian Kesehatan Republik 
Indonesia.

3  Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, 
A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). 
Pathophysiology of Type 2 Diabetes Mellitus. International 
Journal of Molecular Sciences, 21(17), 6275.

4  Kaur, N., Kumar, V., Nayak, S. K., Wadhwa, P., Kaur, P., & 
Sahu, S. K. (2021). Alpha-Amylase as Molecular target for 
Treatment of Diabetes Mellitus: A Comprehensive Review. 
Chemical Biology & Drug Design, 98(4), 539–560.

5  Yuan, H., Wan, H., Hu, Y.-K., Ayeni, E. A., Chang, Q., Ma, C., & 
Liao, X. (2021). Fishing of α-Glucosidase’s Ligands from Aloe 
vera by α-Glucosidase Functionalized Magnetic Nanoparticles. 
Molecules, 26(19), 5840. 

6  Dahlén, A. D., Dashi, G., Maslov, I., Attwood, M. M., Jonsson, 
J., Trukhan, V., & Schiöth, H. B. (2022). Trends in Antidiabetic 
Drug Discovery: FDA Approved Drugs, New Drugs in Clinical 
Trials and Global Sales. Frontiers in Pharmacology, 12, 807548.

7  Kementerian Kesehatan Republik Indonesia. (2017). 
Farmakope Herbal Indonesia (II). Kementerian Kesehatan RI.

8  Abozid, M., El-Rahman, H., & Mohamed, M. (2018). Evaluation 
of the Potential Anti-diabetic Effect of Apium graveolens dan 
Brassica oleracea Extract in Alloxan induced Diabetic Rats. Int. 
J. Pharm, 49(2), 39–44.

9  Gutierrez, R. M. P., Juarez, V. A., Sauceda, J. V., & Sosa, I. A. 
(2014). In Vitro and In Vivo Antidiabetic and Antiglycation 
Properties of Apium graveolens in Type 1 and 2 Diabetic Rats. 
International Journal of Pharmacology, 10(7), 368–379. 

10  Rahmani, A. H., Alsahli, M. A., & Almatroodi, S. A. (2017). Active 
Constituents of Pomegranates (Punica granatum) as Potential 
Candidates in The Management of Health Through Modulation 
of Biological Activities. Pharmacognosy Journal, 9(5).

11  Syarifahnur, F., Roslizawaty, R., Amiruddin, A., Hasan, M., 
Karmil, T. F., & Budiman, H. (2018). The Effect of Celery 
Leaves Infusa (Apium graveolens L) on Reducing Level of Blood 
Glucose on Rat (Rattus norvegicus) Induced by Alloxan. Jurnal 
Medika Veterinaria, 12(1), 36–39.

12  Wasfi, R. M. A. H., & AL-kabi, Y. S. A.-J. (2019). Studying the 
Hypoglycemic Activity of Celery Herb Extract Apium graveolens 
in Blood Glucose Level of Laboratory Rats (Sprague Dawely). 
Journal of Pure and Applied Microbiology, 13(4), 2389–2395.

13  Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, 
Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, M., & 
Darusman, L. K. (2012). KNApSAcK Family Databases: Integrated 
Metabolite–Plant Species Databases for Multifaceted Plant 
Research. Plant and Cell Physiology, 53(2), e1–e1.

14  Katiyar, C., Gupta, A., Kanjilal, S., & Katiyar, S. (2012). Drug 
Discovery From Plant Sources: An Integrated Approach. Ayu, 
33(1), 10. 

15  Goodwin, R. J. A., Bunch, J., & McGinnity, D. F. (2017). Mass 
Spectrometry Imaging in Oncology Drug Discovery. Advances 
in Cancer Research, 134, 133–171.

16  Syahputra, G. (2014). Simulasi Docking Kurkumin enol, 
bisdemetoksikurkumin dan Analognya sebagai Inhibitor 
Enzim 1,2-lipoksigenase. Jurnal Biofisika, 10(1).

17  Silakari, O., & Singh, P. K. (2020). Concepts and Experimental 
Protocols of Modelling and Informatics in Drug Design. 
Academic Press 

18  Maurus, R., Begum, A., Williams, L. K., Fredriksen, J. R., Zhang, 
R., Withers, S. G., & Brayer, G. D. (2008). Alternative Catalytic 
Anions Differentially Modulate Human α-Amylase Activity and 
Specificity. Biochemistry, 47(11), 3332–3344.

19  Kumar, P., Duhan, M., Kadyan, K., Sindhu, J., Kumar, S., & 
Sharma, H. (2017). Synthesis of Novel Inhibitors of α-Amylase 
Based on The Thiazolidine-4-one Skeleton Containing 
a Pyrazole Moiety and Their Configurational Studies. 
MedChemComm, 8(7), 1468–1476. 

20  Bender, B. J., Gahbauer, S., Luttens, A., Lyu, J., Webb, C. M., 
Stein, R. M., Fink, E. A., Balius, T. E., Carlsson, J., & Irwin, J. 
J. (2021). A Practical Guide to Large-Scale Docking. Nature 
Protocols, 16(10), 4799–4832.

21  Malmstrom, R. D., & Watowich, S. J. (2011). Using Free Energy 
of Binding Calculations to Improve the Accuracy of Virtual 
Screening Predictions. Journal of Chemical Information and 
Modeling, 51(7), 1648–1655.

22  Damayanti, S., Khonsa, K., & Amelia, T. (2021). Antiviral Activity 
and Toxicity Prediction of Compounds Contained in Figs 
(Ficus carica L.) by In Silico Method. In Indonesian Journal of 
Pharmaceutical Science and Technology Journal Homepage 
(Issue 1). http://jurnal.unpad.ac.id/ijpst/UNPAD21.

23  Bhat, V., & Chatterjee, J. (2021). The Use of In Silico Tools for 
The Toxicity Prediction of Potential Inhibitors of SARS-CoV-2. 
Alternatives to Laboratory Animals, 49(1–2), 22–32. 

https://doi.org/10.20884/1.api.2023.11.2.11704
https://www.who.int/healthtopics/diabetes? gclid=Cj0KCQiA 1rSsBhDHARIsANB4EJY0_Y6ecKccRdbcbZaTyfTVXY
https://www.who.int/healthtopics/diabetes? gclid=Cj0KCQiA 1rSsBhDHARIsANB4EJY0_Y6ecKccRdbcbZaTyfTVXY
https://www.who.int/healthtopics/diabetes? gclid=Cj0KCQiA 1rSsBhDHARIsANB4EJY0_Y6ecKccRdbcbZaTyfTVXY
https://www.who.int/healthtopics/diabetes? gclid=Cj0KCQiA 1rSsBhDHARIsANB4EJY0_Y6ecKccRdbcbZaTyfTVXY
http://jurnal.unpad.ac.id/ijpst/UNPAD21

