MODEL MATEMATIKA PENYEBARAN VIRUS NIPAH (NiV) DENGAN KONTROL OPTIMAL MENGGUNAKAN METODE PONTRYAGIN MAXIMUM PRINCIPLE (PMP)

  • Nur Ilmayasinta Universitas Islam Lamongan
  • Annisa Rahmita Soemarsono Prodi Matematika Institut Teknologi Kalimantan
  • Erra Noer Rohmania Aishwaray Prodi Pendidikan Matematika FKIP Universitas Islam Lamongan

Abstract

The use of optimal intervention strategies to prevent the spread of Nipah virus (NiV) by applying optimal control approaches is discussed in this article. To begin, we developed a dynamic model of NiV infection as well as three control strategies: public awareness, treatment, and quarantine. The study's goal was to lower the number of affected patients while lowering the three control costs. The Pontryagin maximum concept will be used to characterize optimal control, followed by numerical simulations using the Runge Kutta method of order 4. The simulation findings suggest that the optimal control technique is effective in reducing the appropriate cost of infected individuals while also providing three ideal controls. Early control measures can also effectively prevent the spread of the Nipah virus, according to numerical simulations

Published
2022-07-12
How to Cite
ILMAYASINTA, Nur; SOEMARSONO, Annisa Rahmita; AISHWARAY, Erra Noer Rohmania. MODEL MATEMATIKA PENYEBARAN VIRUS NIPAH (NiV) DENGAN KONTROL OPTIMAL MENGGUNAKAN METODE PONTRYAGIN MAXIMUM PRINCIPLE (PMP). Jurnal Ilmiah Matematika dan Pendidikan Matematika, [S.l.], v. 14, n. 1, p. 95-108, july 2022. ISSN 2550-0422. Available at: <http://jos.unsoed.ac.id/index.php/jmp/article/view/5739>. Date accessed: 06 dec. 2022. doi: https://doi.org/10.20884/1.jmp.2022.14.1.5739.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.