PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER

  • Agustini Tripena Br. Sb. Department of Mathematics, Jenderal Soedirman University

Abstract

This paper discusses aselection of smoothing parameters for the linier spline regression estimation on the data of electrical voltage differences in the wastewater. The selection methods are based on the mean square errorr (MSE) and generalized cross validation (GCV). The results show that in selection of smooting paranceus the mean square error (MSE) method gives smaller value , than that of the generalized cross validatio (GCV) method. It means that for our data case the errorr mean square (MSE) is the best selection method of smoothing parameter for the linear spline regression estimation.

Published
2011-06-24
How to Cite
TRIPENA BR. SB., Agustini. PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Jurnal Ilmiah Matematika dan Pendidikan Matematika, [S.l.], v. 3, n. 1, p. 9-19, june 2011. ISSN 2550-0422. Available at: <http://jos.unsoed.ac.id/index.php/jmp/article/view/2969>. Date accessed: 04 feb. 2023. doi: https://doi.org/10.20884/1.jmp.2011.3.1.2969.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.