KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES
Abstract
The Hermite-Hadamard inequality is an inequality for convex functions that gives an estimate for the integral mean value of a convex function on a closed interval by its value at the middle of interval and the average of its values at the endpoints. The Hermite-Hadamard inequality can be generalized by using the Riemann-Stieltjes integral mean value. An application of the Hermite-Hadamard inequality with respect to Riemann-Stieltjes integral for estimating the power mean of positive real numbers by the aritmethic mean is given at the end of discussion.
Published
2012-06-29
How to Cite
HAKIM, Denny Ivanal; GUNAWAN, Hendra.
KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES.
Jurnal Ilmiah Matematika dan Pendidikan Matematika, [S.l.], v. 4, n. 1, p. 59 - 68, june 2012.
ISSN 2550-0422.
Available at: <http://jos.unsoed.ac.id/index.php/jmp/article/view/2942>. Date accessed: 08 feb. 2023.
doi: https://doi.org/10.20884/1.jmp.2012.4.1.2942.
Section
Articles