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ABSTRACT. The mathematical model for subdiffusion process with chemotaxis proposed 

by Langlands and Henry [1] for the one-dimensional case is extended to the multi-

dimensional case. The model is derived from random walks process using a probability 

measure on a n-multidimensional unit ball     . 
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ABSTRAK. Model matematika untuk proses subdifusi dengan kemotaksis yang 

diturunkan oleh Langlands dan Henry [1] untuk kasus satu dimensi diperluas ke kasus 

multidimensi. Model ini diturunkan dari proses gerak acak dengan menggunakan ukuran 

peluang pada bola satuan multidimensi-n     . 

Kata kunci: model multidimensi, subdifusi, kemotaksis. 

1. Introduction 

Consider the chemotaxis-diffusion system 
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where      is a bounded domain with    boundary.  The System Eq. (1)-(4)  

is well known as the Keller-Segel Chemotaxis (KS) model. In this model (KS),   

and   stand for the concentration of amobae and acrasin, respectively, where 

acrasin is a chemoattractant produced by the amobae. The model (KS) describes 

the space and time evolution of the concentration of diffusing amoebae that is 

chemotactically attracted by diffusing acrasin (see [2]). In general, the model (KS) 

can be used to explain the space and time evolution of the concentration of a 

diffusing species that is chemotactically attracted by a diffusing chemoattractant. 
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Langlands and Henry [1] derived an equation describing the process in which the 

attracted species moves subdiffusively, which is called by the fractional 

chemotaxis-diffusion equation for the one-dimensional case.  It is different from 

Eq. (1) describing the process in which the attracted species moves diffusively. 

Here, we extend the equation proposed by Langlands and Henry [1] for the one-

dimensional case to the multi-dimensional case. A particle moving in diffusion 

process follows the pattern 

〈  ( )〉           

where 〈  ( )〉 is the mean square displacement at time    , whereas a particle 

moving in subdiffusion process follows the pattern 

〈  ( )〉                                                                                                 ( ) 

It means that the particle movement in subdiffusion process is slower than that in 

diffusion process  (see[3]). 

This paper is composed of three sections. In the second section, we 

introduce briefly the fractional integration and differentiation of Capuo operator. 

In the last section, our main result is shown. 

2. Fractional Time derivative 

Let       and   (   ) for some    . The fractional integral of order   is 

defined by 

   

    
 ( )  ∫

(   )   

 ( )

 

 

 ( )          ( )                                                ( ) 

For    , we set         ( )   ( ). The fractional integral operator in Eq. (6) obeys 

the semigroup property  
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The Caputo fractional derivative of order   is defined by 
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where   denotes the convolution of function 

(   )( )  ∫ (   ) ( )  

 

 

         

and     ( ) is the set of all functions     ( ) such that the distributional derivative of 

  exists and belongs to   ( ). The operator        is a left inverse of         , that is 

  

   
   

    
 ( )   ( )                                                                                             ( ) 

but it is not a right inverse, that is  

  

   
   

    
 ( )   ( )   ( )         

We next introduce Mittag-Leffler function defined by 

    ( )  ∑
  

 (    )

 

   

                  

This function is entire. For    , we set     ( )    ( ) and, for      , we get 

that     ( ) is nothing but exponential function   . We refer to Kilbas et al. [4] and 

Podlubny [5] for more details concerning the fractional integral and derivative. 

3. Main Results 

We consider a particle moving in a random walk process. In this process, 

we suppose  (     ),  ( ), and   (   ) stand for the jump probability of the 

particle in the direction        from position   at time  , the waiting time 

probability of the particle to jump after waiting a time    , and the 

concentration of the particles at position   at time  , respectively, where      

*     | |   +. Following Langlands and Henry [2], we start from the master 

equation 

 (   )   (   ) ( ) 

                   ∫ ∫  (   ) (         ) (       )    

    

 

 

        ( ) 
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to derive our model in the multidimensional case. The equation means that the 

concentration of the particles at position   at time   consists of the concentration 

of the particles at position   at time     which have not yet jumped (the first 

term on the right hand side) and the concentration of the particles at position 

      at an earlier time   that then jumps at time   after waiting a time     in 

the direction   with the constant jump length    (the second term on the right 

hand side). Using Laplace transform applied to Eq. (9), we have 

 ̃(   )   ( ) (
   ̃( )

 
) 

                    ̃( ) ∫  ̃(         ) ̃(       )

    

                                    (  ) 

where 

 ̃( )  ∫      ( )  

 

 

  

Consequently, using the invers of Laplace transform applied to Eq. (10), we get 

               (   )   (   )

 ∫ (   ) {  (   )

 

 

 ∫  (         ) (       )  

    

}                                (  ) 

where 

 ̃( )  
 ̃( )

   ̃( )
  

We now suppose that the jump probability   is a constant or does not depend on the 

direction   and time  . It can be interpreted that the particle in the process moves in a 

homogen medium or the particle movement is not influenced by any external force field. 

In this case, since   satisfies the normalized condition 
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∫  (     )  

    

   

then  (     )    |    | where 

|    |  ∫   

    

 
     

 (   )
  

It follows that Eq. (11) becomes 

  (   )   (   ) 

                
 

|    |
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Lemma 1 ([6]). If    ( ) is a    function then 

∫  (     )   ( )  

    

 
 

 
|    |(  )  ( )   ((  ) ) 

as     . 

 

Applying Lemma 1 to Eq. (12), we obtain 

 (   )   (   )  
(  ) 

  
∫ (   )  (   )  

 

 

  ((  ) )              (  ) 

as     . When the random walk process is Markovian or the waiting time 

probability is Poissonian 

 ( )  
 

 
  

 
                                                                                        (  ) 

by simple calculation, we get  ( )     . Then, Eq. (13) is reduced to  

 (   )   (   )  
(  ) 

   
∫  (   )  

 

 

  ((  ) )                               (  ) 

as     . Thus, if we take the limit      ,    , and (  )    is kept finite 

then Eq. (15) becomes 
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                                                                                                                (  ) 

where 

  
(  ) 

   
                                                                                                          (  ) 

Eq. (16) is well known as Diffusion equation, whereas Eq. (17) is called by 

Diffusion coefficient. 

We now assume that the random walk process is non Markovian with the 

waiting time probability 

  ( )  
    

  
    ( (

 

 
)
 

)                                             (  ) 

The process with the waiting time probability expressed by Eq. (18) has the 

characteristic as described by Eq. (5) (see [7]). By Laplace transform and its 

invers, from Eq. (18), we obtain 

 ( )  
 

  
 
    

 ( )
  

Then Eq. (13) is reduced to 

 (   )   (   )  
(  ) 

    
∫
(   )   

 ( )
  (   )  

 

 

  ((  ) )          (  ) 

as     . Consequently, by Eq. (8) and (19), we get 

  

   
 (   )  

(  ) 

    
  (   )   ((  ) )                                                   (  ) 

as     . Thus, if we take the limit      ,    , and (  )     is kept finite 

then Eq. (20) is reduced to 

   

   
                                                                                                            (  ) 

where 

   
(  ) 

    
                                                                                                        (  ) 

Eq. (21) and (22) are called by Subdiffusion equation and coefficient, 

respectively. 

We next suppose that   satisfies 
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 (     )   (      )   (     )                                                          (  ) 

 (     )   (      )   (     )                                                          (  ) 

where    , which means that the process is influenced by an external force 

field. For the case    , it is exactly same as that describing the process in which 

the particle moves in a homogen medium or the particle movement is not 

influenced by any external force field as explained previously. By the normalized 

condition of  , we have 

 
 

 
∫  (     )

    

    

For the jump lenght    sufficiently small, by Taylor-series expansion with respect 

to  , we next get 

 (         ) (       ) 

  (     ) (   )        (     ) (   ) 

     
 

 
(  ) *   +  (     ) (   )   ((  ) )                       (  ) 

Similarly, 

 (         ) (       ) 
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By Eq. (25) and (26), we then obtain 

 (         ) (       )   (         ) (       ) 
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(  ) *   +  (     ) (   )   ((  ) )                       (  ) 

We then suppose that   satisfies the condition 

 (     )  
  

|    |
   (   )                                                                       (  ) 

where  (   )  (  (   )   (   )     (   ))   
  is the external force field 

influencing the particle jump at position   at time   and   (   )           is 

the external force field influencing the particle jump at position   at time   in the 
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   -direction of  -dimensional coordinate system. We also suppose that  (     ) 

is a constant implying  (     )    |    |. Since 

∫     

    

                                                                                       (  ) 

∫       

    

    
|    |

 
                                                              (  ) 

where   (          )   
   , then, by Eq. (27), 

  (   )  ∫  (         ) (       )  
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Thus, by Eq. (28), (29), and (30), Eq. (11) is reduced to 

  (   )   (   ) 

 
(  ) 

  
∫ (   )*  (   )     (   ) (   )+  

 

 

    

  ((  ) )                                                                                             (  ) 

Using the waiting time probabilities Eq. (14) and Eq. (18), Eq. (32) becomes 

 

  
 (   )     (  (   )   (   ) (   ))                                            (  ) 

and 

  

   
 (   )      (  (   )   (   ) (   ))                                        (  ) 
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respectively. Eq. (33) is well known as Fokker-Planck equation, whereas Eq. (34) 

is called as Fractional Fokker-Planck equation or Fokker-Planck equation with 

subdiffusive kinetics. 

Following Stevens [8] for the multi-dimensional case, we now suppose 

that the jump probability in the direction   depends on the chemoattractant on a 

side of the current position, that is 

 (     )  
 (       )

∫  (       )  
    

                                                            (  ) 

where  (   ) is a sensitivity function depending on the concentration  (   ) of 

the chemoattractant at position   at time   

 (   )     (   )  

Assuming  (     ) is a constant, we then have  

∫  (       )  

    

 
|    |

 
, (       )   (       )-  

Consequently, 
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∫  (       )  
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|    |
    (       (   )) 

                                                            
  

|    |
    (   )                                        (  ) 

Thus, by Eq. (23), (24), (33), (34), (36) and using Eq. (14) and (18) again, we 

obtain  

 

  
 (   )     (   )       (   )  (   )                                           (  ) 

and 
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 (   )      (   )        (   )  (   )                                   (  ) 

respectively, where 

  
 (  ) 

  
       

 (  ) 

   
  

Eq. (37) is well known as the mathematical model of chemotaxis-diffusion 

describing the space and time evolution of the concentration of a particle that 

moves diffusively and is chemotactically attracted by a diffusing chemoattractant, 

whereas Eq. (38) is the mathematical model for chemotaxis-diffusion process in 

which the particle involved moves subdiffusively and is chemotactically attracted 

by a diffusing chemoattractant. 
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