

Sesquiterpenoids from Aglaia cucullata Peel Fruit and Their Cytotoxic Activities Against B16-F10 and HeLa Cancer Cell Lines

Intan Hawina Anjari¹, Desi Harneti¹, Al Arofatus Naini¹, Kindi Farabi¹, Risyandi Anwar³, Unang Supratman^{1, 2}

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia

²Central Laboratory, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia ³Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Muhammadiyah Semarang, Semarang 50272, Indonesia

*Corresponding author email: unang.supratman@unpad.ac.id

Received February 08, 2023; Accepted June 25, 2023; Available online November 20, 2023

ABSTRACT. Sesquiterpenoids are terpenoid derivative compounds that have a diverse chemical structure and pharmacological effects. Sesquiterpenoids can be found in many plants of *Aglaia* which is the large source of natural compounds in the Meliaceae family. This investigation was intended to elucidate the structure of sesquiterpenoids from *Aglaia cucullata* peel fruit and their cytotoxicity against two human cancer cell lines. *n*-hexane extracts were separated by various chromatographic methods to yield three sesquiterpenoids. These sesquiterpenoids were identified by spectroscopy analysis (HR-TOFMS, IR, ¹H, ¹³C-NMR, DEPT-135) as well as compared with spectral data which reported previously. The sesquiterpenoid compounds **1-3** were identified as spathulenol (**1**), alismol (**2**), and 10-oxoisodauc-3-en-15-al (**3**). The cytotoxic activity of three sesquiterpenoid compounds were tested against B16-F10 skin cancer cell and HeLa cervical cancer cell using the PrestoBlue method. Compound **2** exhibited the highest activity against both HeLa and B16-F10 cancer cell lines with IC₅₀ 218.33 μ M and 258.90 μ M, respectively.

Keyword: Aglaia cucullata, sesquiterpenoid, cytotoxic activity, HeLa, B16-F10

INTRODUCTION

Sesquiterpenoids terpenoid derivative are compounds that consisted of fifteen carbon atoms and formed by three isoprene units (C_5) . Sesquiterpenoids have a diverse chemical structure and exists in a several skeletal forms based on the total of its rings. Sesquiterpenoids in general are a scented oil and usually considered as major component of essential oil. The biological activities of sesquiterpenoids have been widely reported such as antimalarial (Wu et al., 2020), cytotoxic activities (Izdihar et al., 2021), antitumor (Liu et al., 2014), and antifungal (Dharmayani et al., 2020). Sesquiterpenoids can be found in plants of the Meliaceae, Cactaceae, Solanaceae, Araceae, and Euphorbiaceae family (Mbaveng et al., 2014).

Aglaia is the large source of natural compounds in the Meliaceae family which has a total of 150 species distributed in subtropical and tropical rainforests in the south-eastern and southern Asia and Pacific (Pan et al., 2014; Harneti & Supratman, 2021) and the northern Australia (Peng et al., 2015). In Asia, plants of the Aglaia genus are distributed in India, Malaysia, Thailand, Indonesia, and Vietnam (Joycharat et al., 2008) and eight species of them spread in the south of China (Xie et al., 2007). Around 65 species of Aglaia plants grow in Indonesia and spread in the island of Java, Sumatra, Bali, Sulawesi, and Kalimantan (Heyne, 1987). Plants from Aglaia genus is widely used as indigenous medicine for treatment of cough, diarrhea, fever (An et al., 2016), skin diseases (Hutagaol et al., 2020), heart disease (Yodsaoue et al., 2012), and bruises (Harneti et al., 2014). In addition, the biological activities of this plants have been investigated such as antioxidant, antibacterial (Pervin et al., 2016), insecticidal (Schneider et al., 2000), antiviral (Esimone et al., 2010), antitumor (Awang et al., 2012), antifungal (Joycharat et al., 2010), and cytotoxic activities (Farabi et al., 2017; Hidayat et al., 2017a, 2017b, 2018) . In the Aglaia genus, twenty-six sesquiterpenoid compounds have been reported, there were the type of cadinene (Huang et al., 2022), aromadendrane, isodaucane, and eudesmane (Harneti et al., 2022), guaiane (Liu et al., 2014), clovane, caryolane (Izdihar et al., 2021), and caryophyllene-type (Benosman et al., 1995).

Aglaia cucullata is a mangrove plant that grow in tobacco swamps and is the only species from the Aglaia genus that has pneumatophores roots (Heads, 2019). A. cucullata is distributed in the rainforests of

Southeast Asia, India, Bangladesh, Nepal, Pakistan, Myanmar, Malaysia, Thailand, Vietnam, Solomon Islands, and Indonesia in the islands of Borneo and Sumatra (Pervin et al., 2016). Twenty-two compounds from A. cucullata have been reported such as diterpenoids, triterpenoids (Ahmed et al., 2010), alkaloids (Chumkaew et al., 2019), bisamides (Abdelfattah et al., 2010; Ahmed et al., 2010), rocaglamides (Chumkaew et al., 2006), and flavonoids (Abdelfattah et al., 2010). Amocurin C isolated from the root of A. cucullata showed the cytotoxicity against KB cells and MCF-7 breast cancer cells (IC₅₀ 4.2 and 3.5 μ M, respectively) (Chumkaew et al., 2019). In addition, rocaglamide derivatives from the fruit of A. cucullata showed the strong cytotoxicity against KB, BC, and NCI-H187 cells (Chumkaew et al., 2006). Based on literatures, sesquiterpenoids have not been reported from this species. This paper described the isolation, structure elucidation and cytotoxic evaluation against HeLa and B16-F10 cancer cell lines of three type of aromadendrane, guaiane, and isodaucane sesquiterpenoids from A. cucullata.

EXPERIMENTAL SECTION

General Experimental Procedures

Perkin Elmer spectrum 100 FTIR in plate of KBr (Waltham, Massachusetts, USA) was used to obtain IR Waters QTOF-HRTOFMS-XEV^{otm} mass spectra. spectrometer was used to obtain high-resolution mass spectra. Meanwhile, NMR spectras of 1 and 2 were also recorded by Bruker Av-500 spectrometer (Bruker, Karlsruhe, Germany) at 500 MHz for ¹H and 125 MHz for ¹³C, whereas **3** was recorded by JEOL JNM-ECZ500R/S1, CDCl₃ as a solvent and tetramethyl silane (TMS) as an internal standard. ODS 100-200 mesh (Fuji Sylisia Chemical LTD.) and silica gel 60 70-230 and 230-400 mesh (Merck) were used for column chromatography. Silica gel 60 GF₂₅₄ and RP-18 F₂₅₄s plates (Merck) were used for thin-layer plate chromatography. Detection of TLC was monitored under UV-Vis light and sprayed with H₂SO₄ (10%) in ethanol.

Plant Materials

A. cucullata (Roxb.) Pellegr. peel fruit was collected from the Manggar River, Balikpapan, East Kalimantan, Indonesia in December 2020. The plant was examined at the Herbarium Wanariset (WAN), Balikapapan (collection No. FF7.20), and stored at the Faculty of Forestry, Mulawarman University.

Extraction and Isolation

Dried A. *cucullata* peel fruit (1 kg) was macerated using ethanol 70% repeatedly, filtered, and evaporated to give concentrated orangish ethanol extract. This orangish extract was fractionated consecutively with *n*-hexane, EtOAc, and *n*-butanol. Furthermore, all organic fractions were evaporated with rotary evaporator at temperature 37° C to produce a concentrated extracts of *n*-hexane (250.7 g, 25.1%), EtOAc (40.9 g, 4.1%), and *n*-butanol (5.9 g, 0.6%). All extracts were tested their cytotoxicities against two human cancer cells and showed respectively an IC₅₀ values 7.85, 85.03, 120.22 μ g/mL against B16-F10 cancer cells, and 23.77, 166.40, 243.30 μ g/mL against HeLa cancer cells. *n*-hexane extracts demonstrated the highest cytotoxicity and according to the analysis of TLC, this extracts showed the content of terpenoid compounds.

The extract of *n*-hexane was separated by VLC using 10% gradient eluent system of *n*-hexane-EtOAc (100:0 - 0:100) on silica gel to gained five fractions (A-E). B Fraction (9.4 g) was performed by column chromatography/CC silica gel (70-230 mesh) with gradient solvent of n-hexane and EtOAc (100:0 -90:10) to obtained seven combined fractions (B1-B7). Then, separation of B4 fraction (952.0 mg) was performed by CC silica gel (230-400 mesh) using nhexane:EtOAc (100:1) to give five fractions (B4A-B4E). Purification of the subfraction B4D (34.7 mg) and subfraction B4E (29.7 mg) on silica gel (230-400 mesh) CC using n-hexane:EtOAc (70:1) yield compound 1 (8.5 mg) from B4D subfraction meanwhile compound 2 (5.2 mg) from B4E subfraction.

Separation of the B5 fraction (2.71 g) performed silica gel (70-230 mesh) by CC with nhexane:dichloromethane:EtOAc (25:25:1) eluent to obtained nine combined fraction (B5A-B5I). Furthermore, fraction B5B (269.0 mg) was eluted using *n*-hexane:EtOAc (15:1) to give five subfraction (B5B1-B5B5) by CC silica gel (230-400 mesh). Then, the subfraction B5B2 (154.0 mg) was purificated with ODS CC and eluted with 7:3 of MeOH:H₂O to yield compound **3** (28.5 mg).

Spathulenol (1). Colourless oil; IR (KBr) v_{max} cm⁻¹: 3396, 2926, 2856, 1636, 1457, 1376, 1096 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ_{H} 1.31 (1H, m, H-1), 1.88 (1H, dd, *J*= 6.0, 12.0 Hz, H-2a), 1.64 (1H, dd, *J*= 6.0, 12.0 Hz, H-2b), 1.76 (1H, m, H-3a), 1.54 (1H, m, H-3b), 1.31 (1H, m, H-5), 0.46 (1H, dd, *J*= 9.0, 10.8 Hz, H-6), 0.70 (1H, m, H-7), 1.96 (2H, m, H-8), 2.41 (1H, dd, *J*= 6.0, 13.8 Hz, H-9a), 2.04 (1H, dd, *J*= 6.0, 13.8 Hz, H-9b), 1.04 (3H, s, CH₃-12), 1.06 (3H, s, CH₃-13), 4.66 (1H, br.s, H-14a), 4.69 (1H, br.s, H-14b), 1.28 (3H, s, CH₃-15); ¹³C-NMR in Table 1; HR-TOF MS [M+K]⁺ ion peak at *m*/z 259.1453 (calculated for C₁₅H₂₄OK, *m*/z 259.1464).

Alismol (2). Yellowish oil; IR (KBr) v_{max} cm⁻¹: 3399, 2958, 2871, 1640, 1462, 1382, 1080; ¹H NMR (CDCl₃, 500 MHz): δ_{H} 5.54 (1H, s, H-6), 1.23 (3H, s, CH₃-12), 0.98 (3H, d, J= 6.4 Hz, CH₃-13), 0.96 (3H, d, J= 6.4 Hz, CH₃-14), 4.75 (1H, s, H-15), 4.69 (1H, s, H-15); ¹³C-NMR in Table 1; HR-TOF MS [M+K]⁺ ion peak at *m*/z 259.1453 (calculated for C₁₅H₂₄OK, *m*/z 259.1464).

10-oxo-isodauc-3-en-15-al (**3**) Yellowish oil; IR (KBr) v_{max} cm⁻¹: 3350, 2961, 1720, 1711, 1636, 1465, 1377; ¹H NMR (CDCl₃, 500 MHz): δ_{H} 6.60 (1H, d, J= 5.4 Hz, H-4), 0.91 (3H, d, J= 7.1 Hz, CH₃-13), 0.92 (3H, d, J= 7.1 Hz, CH₃-12), 1.30 (3H, s, CH₃-14), 9.30 (1H, s, H-15); ¹³C-NMR in Table 1; HR-TOF MS [M+Na]⁺ ion peak at *m/z* 257.1520 (calculated for C₁₅H₂₂O₂Na, *m/z* 257.1517).

Determination of Cytotoxic Activity

PrestoBlue® method with resazurin reagent was used to obtain the cytotoxic activities of compound 1-**3** towards melanoma skin cancer cells (B16-F10) and HeLa cancer cells. The first stage of this method was seeding cells. HeLa and B16-F10 cells were seeded into 96 well plates on Rosewell Park Memorial Institute (RPMI) medium and incubated for 24 hours for B16-F10 cell and 48 hours for HeLa cell (temperature 37°C and 5% CO₂ gas) until density of 1.7×10^4 cell/well reached. The second stage was cell treatment with samples, positive, and negative control. In this stage, the RPMI medium on the plates were discarded and added the medium containing sample (DMSO as solvent) with various concentration (250.00, 125.00, 62.50, 31.25, 15.63, 7.81, 3.91, and 1.95 μg/mL) and also cisplatin as positive control. The cells which were treated with sample and positive control were incubated for two days. The last was adding the PrestoBlue® reagents and measurement of absorbances. The medium containing sample on the plates were discarded, then added the PrestoBlue® reagent and incubated for 2 hours until the color changes. Subsequently, the absorbance of each sample was recorded by multimode reader (wavelength 570 nm). Absorbances were converted into percent cell viability to obtain the IC_{50} value.

RESULTS AND DISCUSSION

Three known sesquiterpenoid compounds namely spathulenol (1), alismol (2), and 10-oxoisodauc-3-en-15-al (3) (Figure 1) have been isolated from the peel fruit of A. cucullata. These compounds were reported for the first time from A. cucullata, and 2 was first reported from genus Aglaia.

Compound 1 was isolated as a colorless oil. Its molecular formula is $C_{15}H_{24}O$ according to the HR-TOFMS m/z 259.1453 [M+K]⁺ (calcd. 259.1464), with four unsaturated degrees. The IR spectrum demonstrated the existence of hydroxyl (3396 cm⁻¹), aliphatic (2926 and 2856 cm⁻¹), olefinic (1636 cm⁻¹), gem-dimethyl (1457, 1376 cm⁻¹), and ether bond (C-O) (1096 cm⁻¹). Meanwhile, ¹H-NMR showed the

existence of three proton singlets resonance at δ_{H} 1.04 (3H, s, CH₃-12), 1.06 (3H, s, CH₃-13), and 1.28 (3H, s, CH₃-15) for tertiary methyl groups. Then, the existence of one methylene sp² group which has the chemical shift of geminal proton at δ_{H} 4.66 (1H, br.s, H-14a), and 4.69 (1H, br.s, H-14b). Furthermore, the ¹³C-NMR spectra detailed with DEPT 135° of 1 demonstrated signals for 15 carbons, including three methyls sp³, four methylenes sp³ resonance at δ_{C} 16.3 (C-12), 28.7 (C-13), 26.1 (C-15), 26.7 (C-2), 41.7 (C-3), 24.8 (C-8), 38.9 (C-9), respectively. One olefinic methylene at δ_{C} 106.3 (C-14), four methines at δ_{C} 53.4 (C-1), 54.3 (C-5), 29.9 (C-6), 27.5 (C-7), and three quaternary carbons at δ_{C} 20.3 (C-11), including oxygenated quaternary carbon at δ_{C} 81.0 (C-4), and quaternary olefinic carbon at δ_{C} 153.5 (C-10). Based on ¹³C-NMR spectral data, the disubstituted double bond has been identified as terminal olefinic group $(C = CH_2)$ which calculated for one unsaturated degree. Therefore, three remaining unsaturated degrees indicated the tricyclic sesquiterpenoid skeleton. All NMR spectral data show of aromadendrane-type the characteristic sesquiterpenoid (Roux et al., 1998). It is supported by presence of upfield quaternary carbons at $\delta_{\rm C}$ 20.3 (C-11) which prove the cyclopropane ring in aromadendrane skeleton. The upfield quaternary carbon is due to the presence of isopropyl group bound to the cyclopropane ring to give shielding effect (Feliciano et al., 1989). In addition, the presence of two tertiary methyls at $\delta_{\rm C}$ 16.3 (C-12) and 28.7 (C-13) supported the existence of isopropyl group. Moreover, presence of downfield proton of tertiary methyl at δ_H 1.28 (3H, s, H-15) showed the existence of methyl that bound to the guaternary oxygenated carbon at δ_{C} 81.0 (C-4). Then, the terminal olefinic group (C=CH₂) was suggest at position C-10/C-14 based on biosynthetic approached (Dewick, 2009). The structure determination was carried out by the approach of aromadendrane-type sesquiterpenoids in Aglaia compounds were spathulenol, 4β, genus. These 10α-dihydroxyaromadendrane (Harneti et al., 2022; Izdihar et al., 2021), 4α,10αdihydroxyaromadendrane (Milawati et al., 2020), Tcadinol, ledol (Roux et al., 1998), and viridilflorol (Pointinger et al., 2008). Spathulenol has a similarity

Figure 1. Structure of compound 1-3

functional group with compound 1, so the spectral data of compound 1 and spathulenol (Milawati et al., 2020) were comprised. The result showed the NMR spectral data of both were similar (**Table 1**). Therefore, compound 1 was identified as known compounds, namely spathulenol.

Compound 2 was purified as a yellowish oil, having the molecular formula of C15H24O based on the HR-TOFMS *m*/z 259.1453 [M+K]⁺ (calcd. 259.1464), with four unsaturated degrees. The IR spectra demonstrated the absorption bands of hydroxyl (3399 cm⁻¹), C-H sp³ (2958 and 2871 cm⁻¹), olefinic (1640 cm⁻¹), gem-dimethyl (1462 and 1382 and ether group (C-O) (1080 cm⁻¹), cm⁻¹). Subsequently, ¹H-NMR spectrum gave the signals for one methyl singlet resonance at $\delta_{\rm H}$ 1.23 (3H, s, CH₃-12), two secondary methyls resonance at $\delta_{\rm H}$ 0.98 (3H, d, J= 6.4 Hz, CH₃-13), 0.96 (3H, d, J= 6.4 Hz, CH₃-14), one olefinic methylene at $\delta_{\rm H}$ 4.75 (1H, s, H-15), 4.69 (1H, s, H-15), and one olefinic methine at δ_{H} 5.54 (1H, s, H-6). Moreover, the ¹³C-NMR spectra detailed with DEPT 135° of 2 exhibited the presence of 15 carbons, including three methyls sp³, four methylenes sp³ resonance at δ_{C} 21.5 (C-13), 21.3 (C-12), 24.0 (C-14), 24.7 (C-2), 30.0 (C-8), 37.0 (C-9), 41.2 (C-3), respectively. One olefinic methylene resonance at δ_{C} 106.5 (C-15), four methines at δ_{C} 37.4 (C-11), 47.2 (C-5), 55.0 (C-1), and one of them is methine sp^2 at δ_C 121.2 (C-6), then three of quaternary carbon including oxygenated quaternary carbon at $\delta_{\rm C}$ 80.7 (C-4) and two quaternary olefinic carbons at δ_C 149.8 (C-7) and 153.9 (C-10). Based on ¹H, ¹³C-NMR, and DEPT 135° compound **2** have two of double bond such as terminal olefinic group $(C=CH_2)$ and methine olefinic group (C=CH). These olefinic groups were calculated for two unsaturated degrees. The remaining hydrogen deficiency indexes indicating the existence bicyclic were of sesquiterpenoid structure. The absence of quaternary aliphatic carbon and the number of methyls, methylenes, and methines carbons indicates the characteristic of guaiane-type sesquiterpenoid (Ellithey et al., 2013). All NMR data of 1 and 2 have a similarity chemical shift. Therefore, the determination of the structure of **2** was carried out with the same approach as compound 1. The position of terminal olefinic group ($C=CH_2$) was suggest in the position C-10/C-11 and the hydroxyl group in the position C-4 with β orientation which have the similarity chemical shift with compound 1. However, the cyclopropane ring in the 1 was thought to have undergone ring opening and formed the isopropyl group that indicated a guaianetype. It is supported by presence of two methyl doublets which have the same J value at $\delta_{\rm H}$ 0.98 (J= 6.4 Hz, CH_3 -13) and 0.96 (J= 6.4 Hz, CH_3 -14) which proved the isopropyl in guaiane-type (El-kassem et al., 2018). Then, the position of methine olefinic group (C=CH) suggested in C-6/C-7 based on biosynthetic approached (Dewick, 2009). NMR spectral data of compound **2** was comprised with the data of alismol (Ellithey et al., 2013), including its stereochemistry. The result showed the high similarity (**Table 1**). Consequently, **2** was obtained as alismol.

Compound 3 was purified as a yellowish oil. Possessed a molecular formula of C₁₅H₂₂O₂ based on 257.1520 HR-TOFMS m/z $[M+Na]^+$ (calcd. 257.1517), indicated five unsaturation degrees. Subsequently, demonstrated IR spectrum the absorption bands of hydroxyl (3350 cm⁻¹), aliphatic (2961 cm⁻¹), ketone (1720 cm⁻¹), aldehyde (1711 cm⁻ ¹), olefinic (1636 cm⁻¹), and gem-dimethyl (1465 and 1377 cm⁻¹). Furthermore, the ¹H-NMR spectra of 3 presented one methyl singlet resonance at δ_H 1.30 (3H, s, CH₃-14), methyls doublet resonance at $\delta_{\rm H}$ 0.91 (3H, d, CH₃-13), 0.92 (3H, d, CH₃-12). These methyls have same J value 7.1 Hz. One methine sp² at δ_{H} 6.60 (1H, d, J=5.4 Hz, H-4), aldehyde proton resonance at δ_{H} 9.30 (1H, s, H-15). The ¹³C-NMR spectrum detailed with DEPT 135° of 3 showed the presence of 15 carbons, namely three methyls resonance at δ_C 19.5 and 25.0 (C-14), four (C-13), 22.0 (C-12), methylenes resonance at $\delta_{\rm C}$ 39.0 (C-1), 19.7 (C-2), 26.8 (C-7), 35.1 (C-8), four methines at δ_{C} 53.2 (C-5), 55.4 (C-6), 32.4 (C-11) and one of them is olefinic methine at $\delta_{\rm C}$ 158.9 (C-4), three of quaternary carbon resonance at δ_{C} 59.7 (C-9), including olefinic quaternary carbon resonance at δ_{C} 143.8 (C-3) and carbonyl ketone at $\delta_{\rm C}$ 212.4 (C-10), then one of carbonyl aldehyde at δ_C 192.9 (C-15). Based on $^1\text{H-}$ NMR, ¹³C-NMR, and DEPT 135°, compound 3 have three of double bond such as methine olefinic group (C=CH), carbonyl of ketone and aldehyde. Therefore, compound **3** is bicyclic sesquiterpenoid. The presence of one quaternary aliphatic carbon, one tertiary methyl carbon, and two secondary methyl carbons indicates the characteristic of isodaucane-type sesquiterpenoid (Jares et al., 1989). Two secondary methyl carbons which have the same J coupling constant value at δ_{H} 0.92 (J= 7.1 Hz, CH₃-12) and 0.91 (J= 7.1 Hz, CH₃-13) showed the existence of isopropyl group on the position C-6 which is the characteristic of isodaucanetype (Jares et al., 1989). The isopropyl group is β orientation. It supported by the presence of isopropyl bonded methine at δ_{C} 55,4 (C-6), whereas α orientation at δ_{C} 49,4 (Qin et al., 2018). Subsequently, the position of aldehyde group was suggested on the C-15 and near the olefinic methine (C=CH) on the C-4/C-3, formed the conjugated double bond which caused the compound to absorb a wavelength at 254 nm. While the position of ketone was suggested on C-10 which made the quaternary aliphatic at $\delta_{\rm C}$ 59.7 (C-9) more deshielded. The structure determination of **3** was also carried out by the approach of isodaucanetype sesquiterpenoids in Aglaia genus. Only two isodaucanes, 10-oxoisodauc-3-en-15-al (Pan et al., 2013) and aphanamol I (Harneti et al., 2022)

Carbon Position	Compound 1	Spathulenol*	Compound 2	Alismol**	Compound 3	10-oxo-isodauc- 3-en-15-al***
	δ_{C} (mult.)	δ _C (mult.)	δ _c (mult.)	δ _C (mult.)	δ_{C} (mult.)	δ_{C} (mult.)
1	53.4 (d)	53.5 (d)	55.0 (d)	54.6 (d)	39.0 (t)	38.8 (t)
2	26.7 (t)	26.8 (†)	24.7 (t)	24.6 (t)	19.7 (t)	19.6 (†)
3	41.7 (t)	41.8 (†)	41.2 (t)	40.0 (t)	143.8 (s)	143.6 (s)
4	81.0 (s)	81.1 (s)	80.7 (s)	80.4 (s)	158.9 (d)	158.3 (d)
5	54.3 (d)	54.5 (d)	47.2 (d)	47.0 (d)	53.2 (d)	53.1 (d)
6	29.9 (d)	29.9 (d)	121.2 (d)	121.4 (d)	55.4 (d)	55.3 (d)
7	27.5 (d)	27.5 (d)	149.8 (s)	149.3 (s)	26.8 (t)	26.7 (t)
8	24.8 (t)	24.8 (t)	30.0 (t)	29.8 (t)	35.1 (t)	35.0 (t)
9	38.9 (t)	38.9 (t)	37.0 (t)	36.9 (t)	59.7 (s)	59.0 (s)
10	153.5 (s)	153.5 (s)	153.9 (s)	153.9 (s)	212.4 (s)	211.9 (s)
11	20.3 (s)	20.4 (s)	37.4 (d)	37.3 (d)	32.4 (d)	32.3 (d)
12	16.3 (q)	16.4 (q)	21.3 (q)	21.1 (q)	22.0 (q)	21.9 (q)
13	28.7 (q)	28.7 (q)	21.5 (q)	21.3 (q)	19.5 (q)	19.4 (q)
14	106.3 (t)	106.4 (†)	24.0 (q)	23.8 (q)	25.0 (q)	24.9 (q)
15	26.1 (q)	26.2 (q)	106.5 (†)	106.4 (t)	192.9 (d)	192.4 (d)

Table 1. ¹³C-NMR data of 1-3 (CDCl₃, 125 MHz) and literatures.

*(CDCl₃, 125 MHz); **(CDCl₃, 50 MHz); ***(CDCl₃, 25.1 MHz).

Table 2. Cytotoxic	ity of 1-3 ago	ainst HeLa and	B16-F10	cancer cells
--------------------	-----------------------	----------------	---------	--------------

Compounds	IC ₅₀ (μM)			
Compounds	HeLa	B16-F10		
1	443.56	303.24		
2	218.33	258.90		
3	412.40	339.89		
Cisplatin	9.00	43.00		

have been reported. Compound 3 has a similarity functional group with 10-oxoisodauc-3-en-15-al, so the spectral data of compound **3** and these isodaucanes (Jares et al., 1989) were comprised. The result showed the NMR spectral data were similar (**Table 1**). Compound **3** was obtained as 10-oxoisodauc-3-en-15-al

Cytotoxicity of all sesquiterpenoids 1-3 were evaluated against B16-F10 and HeLa cells corresponded to a method explained previously with positive cisplatin as control. Among all sesquiterpenoid compounds, alismol (2) displayed the highest cytotoxic activity against both of HeLa and B16-F10 cancer cells with IC_{50} values 218.33 and 258.90 μ M, respectively while spathulenol (1) and 10oxoisodauc-3-en-15-al (3) showed the weak activity (Table 2). Comparison of IC₅₀ values of compound 1 and 2 showed that the cytotoxicity of 2 is more active than 1 of both cancer cells, indicating that opening cyclopropane ring can increase the cytotoxic activity. Subsequently, cytotoxicity of **3** against HeLa cell showed more active than 1, but the activity of 1 against B16-F10 cell more active than 3. This indicated that each compound has its own potential for certain cancer cell. The cytotoxicity of compound 1-3 against B16-F10 cells and compound 1 and 3 against HeLa cells were reported for the first time while the cytotoxicity of **2** against HeLa cells was reported by Ellithey et al., (2013).

CONCLUSIONS

Three sesquiterpenoids namely, one aromadendrane-type, spathulenol (1), one guaiane-type, alismol (2), and one isodaucane-type, 10-oxoisodauc-3-en-15-al (3) were isolated from the peel fruit of Aglaia cucullata. Compound 2 was first isolated from Aglaia genus, and compounds 1-3 were isolated for the first time from A. cucullata. Compound 2 showed the highest cytotoxicity against HeLa cervical and B16-F10 melanoma skin cancer cell lines with IC₅₀ value 218.33 μ M and 258.90 μ M, indicating that the opening of cyclopropane ring influenced the cytotoxicity.

ACKNOWLEDGMENTS

This investigation was funded by the Ministry of Education and Culture, Innovative and Research Council, Indonesia, Master Thesis Research (PTM) Grant, (No. 1318/UN6.3.1/PT.00/2022) by Desi Harneti and Universitas Padjadjaran under Academic Leadership Grant with No: 1549/UN6.3.1/PT.00/2023 by Unang Supratman.

REFERENCES

- Abdelfattah, M. S., Toume, K., Ahmed, F., Sadhu, S. K., & Ishibashi, M. (2010). Cucullamide, a new putrescine bisamide from Amoora cucullata. Chemical and Pharmaceutical Bulletin, 58(8), 1116–1118. https://doi.org/10.1248/cpb.58. 1116
- Abou El-Kassem, L. T., Hawas, U. W., El-Desouky, S. K., & Al-Farawati, R. (2018). Sesquiterpenes from the Saudi Red Sea: Litophyton arboreum with their cytotoxic and antimicrobial activities. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 73(1–2), 9–14. https://doi.org/10.1515/znc-2017-0037
- Ahmed, F., Toume, K., Sadhu, S. K., Ohtsuki, T., Arai, M. A., & Ishibashi, M. (2010). Constituents of Amoora cucullata with TRAIL resistanceovercoming activity. Organic and Biomolecular Chemistry, 8(16), 3696–3703. https://doi.org/ 10.1039/c004927a
- An, F. L., Wang, X. B., Wang, H., Li, Z. R., Yang, M. H., Luo, J., & Kong, L. Y. (2016). Cytotoxic rocaglate derivatives from leaves of Aglaia perviridis. Scientific Reports, 6. https://doi.org/ 10.1038/SREP20045
- Awang, K., Loong, X. M., Leong, K. H., Supratman, U., Litaudon, M., Mukhtar, M. R., & Mohamad, K. (2012). Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae). Fitoterapia, 83(8), 1391–1395. https://doi.org/10.1016/j.fitote. 2012.10.004
- Chumkaew, P., Kato, S., & Chantrapromma, K. (2006). Potent cytotoxic rocaglamide derivatives from the fruits of Amoora cucullata. Chemical and Pharmaceutical Bulletin, 54(9), 1344– 1346. https://doi.org/10.1248/cpb.54.1344
- Chumkaew, P., Teerapongpisan, P., Pechwang, J., & Srisawat, T. (2019). New oxoprotoberberine and aporphine alkaloids from the roots of *Amoora cucullata* with their antiproliferative activites. *Records of Natural Products*, *13*(6), 491–498. https://doi.org/10.25135/rnp.128. 19.02.1181
- Dewick, P. M. (2009). Medicinal natural products: a biosynthetic approach. In *John Wiley & Sons*.
- Dharmayani, N. K. T., Yoshimura, T., Hermawati, E., Juliawaty, L. D., & Syah, Y. M. (2020). Antibacterial and antifungal two phenolic sesquiterpenes from Dysoxylum densiflorum. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 75(1–2), 1–5. https://doi.org/10.1515/znc-2019-0072
- Ellithey, M. S., Lall, N., Hussein, A. A., & Meyer, D. (2013). Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral Litophyton arboreum. Marine Drugs, 11(12), 4917–4936. https://doi.org/10.3390/md11124917
- Esimone, C. O., Eck, G., Nworu, C. S., Hoffmann, D., Überla, K., & Proksch, P. (2010).

Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent antiretroviral activity in vitro. Phytomedicine, 17(7), 540–547. <u>https://doi.org/10.1016/j.phymed.</u> 2009.10.015

- Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A. T., Supratman, U., Awang, K., & Shiono, Y. (2017). Cytotoxic steroids from the bark of Aglaia argentea (Meliaceae). Chiang Mai University Journal of Natural Sciences, 16(4), 293–306. https://doi.org/10.12982/ CMUJNS.2017.0024
- Feliciano, A. S., Medarde, M., Gordaliza, M., Olmo,
 E. Del, & Corral, J. M. M. del. (1989).
 Sesquiterpenoids and phenolics of *Pulicaria* paludosa. *Phytochemistry*, 28(10), 2717–2721.
 https://doi.org/10.1016/ S0031-9422(00) 98074-9
- Harneti, D., & Supratman, U. (2021). Phytochemistry and biological activities of Aglaia species. *Phytochemistry*, 181, 112540. https://doi.org/ 10.1016/j.phytochem.2020.112540
- Harneti, D., Ayu Permatasari, A., Anisshabira, A., Arofatus Naini, A., Mayanti, T., Maharani, R., Safari, A., Tatang Hidayat, A., Farabi, K., Supratman, U., Nurul Azmi, M., & Shiono, Y. (2022). Sesquiterpenoids from the Stem Bark of Aglaia grandis. Natural Product Sciences, 28(1), 6–12. https://doi.org/10.20307/nps.2022. 28.1.6
- Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K., & Hayashi, H. (2014). Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochemistry Letters, 8(1), 28–31. https://doi.org/10.1016/ j.phytol.2014.01.005
- Heads, M. (2019). Biogeography and ecology in a pantropical family, the Meliaceae. Gardens' Bulletin Singapore, 71(suppl.2), 335–461. https://doi.org/10.26492/gbs71(suppl.2).201 9-22
- Hidayat, A. T., Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Nurfarida, I., Supratman, U., & Shiono, Y. (2018). Cytotoxic triterpenoids from the stembark of Aglaia argentea (Meliaceae). Indonesian Journal of Chemistry, 18(1), 35–42. https://doi.org/10.22146/ijc.25052
- Hidayat, A. T., Farabi, K., Harneti, D., Nurlelasari, N., Maharani, R., Mayanti, T., Supratman, U., & Shiono, Y. (2017a). A Cytotoxic rocaglate compound from the stembark of Aglaia argentea (Meliaceae). Molekul, 12(2), 146. https://doi.org/10.20884/1.jm.2017.12.2.361
- Hidayat, A. T., Harneti, D., Maharani, R., Mayanti, T., Farabi, K., Sianturi, J., Awang, K., & Supratman, U. (2017b). Cytotoxicity and structure-activity relationship of dammaranetype triterpenoids from *Aglaia* species against P-388 Murine leukemia cells. Natural Product

Sciences, 23(4), 291-298. https://doi.org/10. 20307/nps.2017.23.4.291

- Huang, P. Q., Deng, J. W., Li, Y., Liao, Z. bin, Zhao,
 E., Tian, Y. C., Tu, Y. D., Li, D. L., Jin, J. W.,
 Zhou, C. X., Wu, R. H., & Gan, L. S. (2022).
 Terpenoids from the twigs and leaves of Aglaia
 elaeagnoidea and their chemotaxonomic
 significance. Biochemical Systematics and
 Ecology, 103,104427. https://doi.org/10.
 1016/j.bse. 2022.104427
- Hutagaol, R. P., Harneti, D., Safari, A., Hidayat, A. T., Supratman, U., Awang, K., & Shiono, Y. (2020). Cytotoxic triterpenoids from the stem bark of Aglaia angustifolia. Journal of Asian Natural Products Research, 0(0), 1–8. https://doi.org/ 10.1080/10286020.2020.1776704
- Izdihar, G., Naini, A. A., Harneti, D., Maharani, R., Nurlelasari, N., Mayanti, T., Safari, A., Farabi, K., Supratman, U., Azmi, M. N., & Shiono, Y. (2021). Sesquiterpenoids from the stem bark of Aglaia simplicifolia and their cytotoxic activity against b16-f10 melanoma skin cancer cell. Indonesian Journal of Chemistry, 21(6), 1560– 1567. https://doi.org/10.22146/IJC.68383
- Jares, E. A., Potolovskii, L. A., Katrenko, T. I., Polyakova, A. A., Fufaev, A. A., Bessonova, R. N., Terweij-Groen, C. P., Heemstra, S., Kraak, J. C., Chromatogr, J., Tilly Mehn, A., Ljungcrantz, M., Schill, G., Chiavarino, II M., Salas, C., Schettino, M., Altube, C., Menez, H., D-, S., ... Pomilio, A. B. (1989). Isolation of sesquiterpenes from senecio crassiflorus combined dry column and high performance liquid chromatography by. In Journal of American Oil Chemistry Assn, 197(1).
- Joycharat, N., Greger, H., Hofer, O., & Saifah, E. (2008). Flavaglines and triterpenoids from the leaves of Aglaia forbesii. *Phytochemistry*, 69(1), 206–211. https://doi.org/10.1016/ j.phytochem.2007.06.016
- Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B. E., & Voravuthikunchai, S. (2010). Terpenoid constituents and antifungal activity of Aglaia forbesii seed against phytopathogens. Canadian Journal of Chemistry, 88(9), 937–944. https://doi.org/ 10.1139/V10-085
- Liu, S., Liu, S. B., Zuo, W. J., Guo, Z. K., Mei, W. L., & Dai, H. F. (2014). New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity. *Fitoterapia*, 92, 93–99. https://doi.org/10.1016/j.fitote.2013.10.013
- Liu, S., Yang, W., Liu, S. B., Wang, H., Guo, Z. K., Zeng, Y. B., Dong, W. H., Mei, W. L., & Dai, H.
 F. (2014). A new dolabellane diterpenoid and a sesquilignan from Aglaia odorata var. microphyllina. Natural Product Communications, 9(1), 7–8. https://doi.org/10. 1177/1934578x1400900103

- Mbaveng, A. T., Hamm, R., & Kuete, V. (2014). Harmful and protective effects of terpenoids from African medicinal plants. In *Toxicological Survey of African Medicinal Plants*. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800018-2.00019-4
- Milawati, H., Harneti, D., Maharani, R., Nurlelasari, Hidayat, A. T., Azmi, M. N., Shiono, Y., & Supratman, U. (2019). Caryophyllene-type sesquiterpenoids from the stembark of Aglalia harmsiana and their cytotoxic activity against MCF-7 breast cancer cells. Molekul, 14(2), 126–132. https://doi.org/10.20884/1.jm. 2019.14.2.543
- Milawati, H., Sukmawati, W., Harneti, D., Maharani, R., Nurlelasari, Hidayat, A. T., Darwati, Supratman, U., & Shiono, Y. (2020). Note: Cytotoxic sesquiterpenoids from the stem bark of Aglaia harmsiana (Meliaceae). Indonesian Journal of Chemistry, 20(6), 1448–1454. https://doi.org/10.22146/ijc.47808
- Pan, L., Acuña, U. M., Li, J., Jena, N., Ninh, T. N., Pannell, C. M., Chai, H., Fuchs, J. R., Carcache De Blanco, E. J., Soejarto, D. D., & Kinghorn, A. D. (2013). Bioactive flavaglines and other constituents isolated from Aglaia perviridis. Journal of Natural Products, 76(3), 394–404. https://doi.org/10.1021/np3007588
- Pan, L., Woodard, J. L., Lucas, D. M., Fuchs, J. R., & Kinghorn, A. D. (2014). Rocaglamide, silvestrol and structurally related bioactive compounds from aglaia species natural product reports NPR RSC publishing rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. This Journal Is © The Royal Society of Chemistry, 00, 1–13. www.rsc.org/
- Peng, L., Fu, W. X., Zeng, C. X., Zhou, L., Bao, M. F., & Cai, X. H. (2015). Two new lignans from twigs of Aglaia odorata. Journal of Asian Natural Products Research, 18(2), 147–152. https://doi.org/10.1080/10286020.2015.105 7575
- Pervin, R., Afrin, S., Sabrin, F., Zohora, U. S., Rahman, M. S., Islam, K. D., & Billah, M. M. (2016). Antioxidant, antibacterial and brine shrimp lethality bioassay of Amoora cucullata, a Mangrove Plant. Journal of Young Pharmacists, 8(1), 33–38. https://doi.org/10.5530/jyp. 2016.1.8
- Phongmaykin, J., Kumamoto, T., Ishikawa, T., Saifah, E., & Suttisri, R. (2011). Biologically active constituents of Aglaia erythrosperma. Natural Product Research, 25(17), 1621–1628. https://doi.org/10.1080/14786419.2010.508 038
- Pointinger, S., Promdang, S., Vajrodaya, S., Pannell, C. M., Hofer, O., Mereiter, K., & Greger, H. (2008). Silvaglins and related 2,3secodammarane derivatives – unusual types of

triterpenes from Aglaia silvestris. Phytochemistry, 69(15), 2696–2703. https://doi.org/10.1016/j.phytochem.2008.08 .025

- Roux, D., Martin, M.-T., Adeline, M.-T., Sevenet, T., Hadi, A. H. A., & Paõè, M. (1998). Foveolins A and B, dammarane triterpenes from Aglaia foveolata. Phytochemistry, 49(6), 1745-1748.
- Schneider, C., Bohnenstengel, F. I., Nugroho, B. W., Wray, V., Witte, L., Hung, P. D., Kiet, L. C., & Proksch, P. (2000). Insecticidal rocaglarnide derivatives from Aglaia spectabilis (Meliaceae). *Phytochemistry*, 54(8), 731–736. https://doi.org/10.1016/ S0031-9422(00) 00205-3
- Wang, X., Peng, X., Tang, C., Zhou, S., Ke, C. Q., Liu, Y., Yao, S., Ai, J., & Ye, Y. (2021). Antiinflammatory eudesmane sesquiterpenoids from Artemisia hedinii. Journal of Natural

Products, 84(5), 1626–1637. https://doi.org/ 10.1021/acs.jnatprod.1c00177

- Wu, X. R., Shen, Y., Cui, S. J., Luo, X. L., Xiao, C. J., & Jiang, B. (2020). A new antimalarial noreudesmane sesquiterpenoid from Dobinea delavayi. Natural Products and Bioprospecting, 10(2), 101–104. https://doi.org/10.1007/ s13659-020-00234-4
- Xie, B. J., Yang, S. P., Chen, H. D., & Yue, J. M. (2007). Agladupols A-E, triterpenoids from Aglaia duperreana. Journal of Natural Products, 70(9), 1532–1535. https://doi.org/10.1021/np 0702842
- Sonprasit, Yodsaoue, O., J., Karalai, С., Ponglimanont, C., Tewtrakul, S., & Chantrapromma, S. (2012). Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry, 76, 83-91. https://doi.org/10. 1016/j.phytochem.2012.01.015