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ABSTRACT. Aglaia is the largest genus of the Meliaceae family which contains terpenoid compounds. This type of compounds 

showed a diverse structures and biological activities that can be found in natural resources. Aglaia elaeagnoidea is a species 

from Aglaia genus that only has a few previous research. This study was aimed to isolate and determine the chemical 

structure of terpenoid compounds from the ethyl acetate extract of A. elaeagnoidea stem bark. Ethyl acetate extracts were 

separated and purified by various chromatographic techniques to obtain compounds 1-5. Compounds 1-5 were identified 

their chemical structures by spectroscopic methods (IR, MS, and NMR) and comparison with previous reported spectral data. 

Compounds 1 and 2 were identified as eudesmane-type sesquiterpenoids, 5-epi-eudesm-4(15)-ene-1β,6β-diol (1) and 6α-

Hydroxy-eudesm-4(15)-en-1-one (2). Compounds 3-5 were identified as dammarane-type triterpenoids, 20S,24S-epoxy-

25-hydroxydammarane-3-one (3), 20S,24S-epoxydammarane-3α,25-diol (4), and 3α-epi-cabraleahydroxy lactone (5). 

These compounds are first time reported from this plant. Compounds 1-5 were tested for cytotoxicity against HeLa cervical 

cancer cell and DU145 prostate cancer cell and as a result, compound 4 (20S,24S-epoxydammarane-3α,25-diol) showed 

the stronger activity compared to other compounds. 

 

Keywords: Aglaia elaeagnoidea, DU145 prostate cancer cell, HeLa cervical cancer cell, Meliaceae, terpenoids. 

 

INTRODUCTION 

Aglaia is the largest genus of the Meliaceae family 

(Pannell, 2018), consisted of over 150 species of 

woody plants mainly distributed in tropical and 

subtropical regions such as Sri Lanka, India, south 

China, Taiwan, Vietnam, Malaysia, the Philippines, 

and Australia including the pacific islands (Ebada, 

Lajkiewicz, Porco,  Li-Weber, & Proksch, 2011; 

Grudinski,  Pannell, Chase, Ahmad, & Muellner-Riehl, 

2014), and more than 65 species only grow in 

Indonesia (Hidayat et al., 2017; Farabi et al., 2018). 

Since 1965, studies on the investigation of chemical 

constituents from Aglaia plant have been isolated of 

various types of compounds, such as sesquiterpenoids 

of caryophyllene-type (Kurniasih et al., 2019; Milawati 

et al., 2019), aromadendrane-type (Milawati et al., 

2020), cadinene-type (Pointinger et al., 2008), 

isodaucane-type (Pan et al., 2013), eudesmane-type 

(Pan et al., 2010), guaiane-type (Liu et al., 2014), and 

dolabellane-type diterpenoids (Cai, Wang,  Zhao, Li,  

& Luo, 2010), triterpenoids of dammarane-type 

(Joycharat, Plodpai, Panthong, Yingyongnarongkul, & 

Voravuthikunchai, 2010; Hidayat et al., 2018; Harneti 

et al., 2019), tirucallane-type (Benosman et al., 1995), 

apotirucallane-type (Xie et al., 2007), Cycloartane-

type (Inada et al., 2001; Awang et al., 2012), 

glabretal-type (Su et al., 2006), protostane-type 

(Yodsaoue et al., 2012), lupane-type, and ursane-type 

(Zhang, Xu, Song, Chen, & Wen, 2012), steroids 

(Mohammad et al., 1999; Hutagaol et al., 2020), 

protolimonoids (Farabi et al., 2017), lignans (Sianturi 

et al., 2016), alkaloids (Sianturi et al., 2015), and 

flavaglins (Kim et al., 2006; An et al., 2016). 

Terpenoid compounds were also found in the Aglaia 

species as the major constituents (Harneti & 

Supratman, 2021).  

Terpenoids have been found to be useful for the 

treatment of various types of diseases and have 

biological activities such as antimicrobial, antifungal, 

antiparasitic, antiviral, antihyperglycemic, 

antihypoglycemic, anti-inflammatory, 

immunomodulatory (Singh & Sharma, 2014), and 

anticancer (Awang et al., 2012).  Although terpenoids 

of Aglaia species have been previously reported, the 

terpenoid compounds of the stem bark of A. 

elaeagnoidea are yet to be reported. The chemical 

constituents that have been reported previously from 

the bark of A. elaeagnoidea are dammarane-type 

triterpenoids, lignans (Fuzzati, Dyatmiko, Rahman, 

Achmad, & Hostettmann, 1996), benzofuran 
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derivatives (Seger, Hofer, & Greger, 2000), and 

rocaglamide (Ngo et al., 2021). In this paper, the 

isolation and structure identification of an eudesmane-

type sesquiterpenoid and dammarane-type 

triterpenoids along with their cytotoxic activity are 

described. 

 

EXPERIMENTAL SECTION 

General Experiment Procedure 

IR spectra were recorded on Nicolet Summit FTIR 

Spectrophotometer with DTGS KBr detector. Mass 

spectra were determined by Waters QTOF-HRTOFMS-

XEV
otm

 mass spectrophotometer. Furthermore, NMR 

spectra of compounds 1, 2, and 5 were measured by 

JEOL JNM-ECZ500R/S1 spectrometer at 500 MHz for 

1
H and 125 MHz for 

13
C, whereas compounds 3 and 

4 were obtained with a JEOL spectrometer at 400 MHz 

for 
1
H and 100 MHz for 

13
C, with CDCl3 as a solvent, 

chemical shifts were given on a δ (ppm) scale and 

tetramethyl silane (TMS) as the internal standard. 

Column chromatography was performed on silica gel 

60 (70–230 mesh and 230–400 mesh; Merck, 

Darmstadt, Germany) and Octa Decyl Silane (ODS, 

Fuji Sylisia, Japan). Thin layer chromatography were 

precoated with silica gel GF254 (Merck, 0.25 mm) and 

detection was achieved by spraying with 10% H2SO4 

in EtOH, followed by heating and analyzed under UV 

light at wavelength 254 and 365 nm. 

Plant material 

The stem bark of A. elaeagnoidea was collected in 

Bogor Botanical Garden, Bogor, West Java, Indonesia 

on August 2017. The plant was identified by Center 

for Plant Conservation Botanic Gardens, Bogor, 

Indonesia and the voucher specimen is Vak.III.C.93. 

Extraction and isolation 

The dried stem bark of A. elaeagnoidea (2.5 kg) 

was extracted exhaustively with methanol at room 

temperature, filtered, and concentrated. The methanol 

extract (486.4 g) was suspended in a mixture of water 

and methanol (9:1), then partitioned with n-hexane, 

ethyl acetate, and n-butanol successively. Each extract 

was evaporated under a reduce pressure to give n-

hexane extract (115.9 g, 4.5%), ethyl acetate extract 

(90.9 g, 3.6%), and n-butanol extract (62.1 g, 2.5%). 

The ethyl acetate extract (90.9 g) was separated by 

vacuum liquid chromatography (VLC) packed with 

silica gel G60 by gradient elution of n-hexane-EtOAc-

MeOH (100:0:0 – 0:0:100) to give eight combined 

fractions (A-H). Fraction D (1.93 g) was subjected to 

silica gel column chromatography n-hexane-EtOAc 

gradient system, yielding 11 fractions (D1-D11). 

Fraction D4 (103.5 mg) was further separated by 

column chromatography on ODS using water : 

methanol (2:8) to give eight fractions (D4a-D4h). 

Purification of the fraction D4b (23.9 mg) on ODS 

column chromatography eluted with water : methanol 

(3:7) give 1 (7.6 mg) and 2 (5.8 mg). Fraction D5 (489 

mg) was separated using n-hexane-EtOAc gradient 

system to afford eight fractions (D5a-D5h). Purification 

of the fraction D5c (21.6 mg) on ODS column 

chromatography eluted with water : acetonitrile 

(0.5:9.5) afforded 3 (8.9 mg). Purification of the 

fraction D5d (108 mg) on ODS column 

chromatography eluted with water : acetonitrile (1:9) 

afforded 4 (13.7 mg). Fraction D7 (120.3 mg) was 

separated by column chromatography on ODS using 

water : methanol (3:7) to give 5 (22 mg). 

Bioassays for Cytotoxic Activity  

The first stage is media preparation, positive 

control, and samples. The second stage is cell 

preparation. The cell to be used has a confluent of min 

70%. The third stage is cell culture. Determined the 

number and viability of cells and then suspend with the 

appropriate cell density. Seeding / culture cells into 96 

well plates, then incubated (temperature 37 °C and 5% 

CO2 gas) for 24 hours or until the cells reach a 

minimum confluence of 70%. The fourth stage is the 

treatment of cells with samples, positive control, and 

negative control. Using micropipettes, 100 μL of each 

sample and positive control of cisplatin from the 

microtube were transferred into each of the 

corresponding microplates on 96 well plates that 

already contained cells. Then incubate again for 24 

hours. The last stage is the provision of PrestoBlue 

reagents and absorbance measurements. Discarded 

media at each well. 9 mL of media were prepared in 

the tube to which 1 mL of "PrestoBlue ™ Cell Viability 

Reagent" was added (10 µL of reagent for 90 µL of 

media), then put 100 µL of the solution mixture into 

each well microplate then incubated for 1-2 hours until 

color changes were seen. In the living cells, the 

PrestoBlue® reagent is reduced from a blue resazurin 

compound with no intrinsic fluorescent value, to a 

resorufin compound which is red in color and highly 

luminous. The conversion value is proportional to the 

number of metabolically active cells and can therefore 

be measured quantitatively. To measure the 

absorbance, the absorbance spectrum for resazurin 

and resorufin was used. Then the absorbance was 

measured at a wavelength of 595 nm using an ELISA 

reader. 

 

RESULTS AND DISCUSSIONS 

The ethyl acetate extract of the stem bark of A. 

elaeagnoidea was chromatographed over vacuum-

liquid chromatography (VLC) column packed with 

silica gel 60 by gradient elution. The VLC fractions 

were repeatedly subjected to silica gel 60 and ODS 

column chromatography to give 1-5 (Figure 1). 

Compound 1 was obtained as a colourless oil. The 

molecular formula of 1 was identified as C15H26O2 

based on the HR-TOFMS m/z 239.1996 [M+H]
+
, 

calculated for C15H27O2, m/z 239.2011, thus required 

three degree of  unsaturation. The IR  spectra  showed
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Figure 1. Chemical Structures of 1 – 5 

the presences of hydroxyl (3422 cm
-1
), an aliphatic 

(2872 cm
-1
), an isolated double bond (1704 cm

-1
), 

gem-dimethyl (1368 cm
-1
), and an ether group (1049 

cm
-1
). 

1
H-NMR spectrum of 1, displayed the presence 

of a tertiary methyl signal at δH 0.85 and two doublet 

methyl signals at δH 0.83 and 0.93, respectively. Then, 

the presence of a typical signal for olefinic protons at 

δH 4.96 and 4.82. In addition, the signal for the 

oxygenated protons at δH 3.93 and 3.50 was also 

observed in the 
1
H-NMR spectrum. 

13
C-NMR spectrum 

with detailed analysis of DEPT showed the presence of 

fifteen carbons consisting of three methyls which 

resonance at δC 21.4 (Me-1), 21.0 (Me-12), and 16.3 

(Me-13), four sp
3
 methylenes, two oxygenated 

methines, one quaternary carbon, one sp
2
 quaternary 

carbon, and one sp
2 
methylene carbon at δC 114.3 (C-

15). These functionalities accounted for one out of the 

total three degree of unsaturation. Two remaining 

hydrogen deficiency indexes has corresponded to the 

bicyclic sesquiterpenoid structure (Kurniasih et al., 

2018; Milawati et al., 2019). 

Based on the number of methyl and methylene in 

the 
1
H-NMR, 

13
C-NMR, and DEPT, 1 considered as an 

eudesmane-type sesquiterpenoid structure (Liu et al., 

2014). 
1
H-NMR spectrum of 1 showed a proton sp

2
 

signal at δH 4.96 (H-15𝛼, J=1.5 Hz) and 4.82 (H-15𝛽, 

J=2.0 Hz) and based on the value of the coupling 

constant, the signal indicates the geminal proton of 

terminal alkene (C=CH2) (Newsoroff & Sternhell, 

1972; Silverstein, Webster, & Kiemle, 2005). The 

position of the terminal double bond in 1 is C-4/C-15 

based on biosynthetic approached. While, the 

hydroxyl groups at C-1 and C-6 (Dewick, 2009). 

Regarding to biosynthesis approached, the position 

of methyl in C-10 is in β-orientation (Tong et al., 2018, 

Christianson & Blank, 2019). Compound 1 showed 

the chemical shift for C-5 (δC 61.7), thus, the 

configuration for C-5 is in β-orientation (Zhang et al., 

2003). A methine proton at C-6 has a 
3
J 10.5 Hz, 

indicating that H-5 and H-6 have axial-axial 

orientation (Silverstein et al., 2005), consequently, 6-

OH has β-orientation. A methine proton at C-1 has a 

double doublet (dd) split pattern with a 
3
J 11.5 Hz, 

indicating that H-1 has an axial position, 

consequently, 1-OH has β-orientation. Meanwhile, a 

methine proton at C-7 has a multiplet split pattern, 

indicating that H-1 has an equatorial position, so, the 

isopropyl group has α-orientation (Sun, Zhang, & Hu, 

2004). 

A detailed comparison of 1 to those 5-epi-eudesm-

4(15)-ene-1β,6β-diol isolated from the leaves and 

twigs Litsea verticillata (Lauraceae) (Zhang et al., 

2003) (Table 1), revealed that both compounds were 

very similar, consequently 1 was identified as 5-epi-

eudesm-4(15)-ene-1β,6β-diol. Compound 1 was 

isolated from Aglaia species for the first time an 

consider as a rare natural cis-eudesmane. 

Compound 2 was obtained as a yellow oil. The 

molecular formula of 2 was identified as C15H24O2 

based on the HR-TOFMS m/z 237.1850 [M+H]
+
, 

calculated for C15H25O2, m/z 237.1855, thus required 

four degree of unsaturation. The IR spectra showed the 

presences of hydroxyl (3462 cm
-1
), an aliphatic (2932 

cm
-1
), an isolated double bond (1705 cm

-1
), a 

carbonyl (1739 cm
-1
),

 
gem-dimethyl (1369 cm

-1
), and 

an ether group (1054 cm
-1
). The NMR data (Table 2) 

for 2 is similar to 1. The main differences are the 

absence of one of the hydroxyl group instead of a 

carbonyl group at δC 213.5 (C-1). Compound 2 

showed the chemical shift for C-5 δC 55.6 thus, C-5 is 

in α orientation. Based on the splitting pattern, a 

methine proton at C-6 has a 
3
J 10.5 Hz, indicating that 

H-5 and H-6 have axial-axial orientation 

consequently, 6-OH has α-orientation. Meanwhile, a 

methine proton at C-7 has a multiplet split pattern, 

indicating that H-1 has an equatorial position 

consequently, the isopropyl group has β-orientation 

(Silverstein et al., 2005). A detailed comparison of the
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Table 1.  Comparison of NMR data between 1 and 5-epi-eudesm-4(15)-ene-1β,6β-diol  

Position of 

Carbon 

1* 5-epi-eudesm-4(15)-ene-1β,6β-diol* 

dH (∑H, mult., J= Hz) dC (mult.) dH (∑H, mult., J= Hz) dC (mult.) 

1 3.93 (1H, dd, 11.5, 4.5) 68.2 (d) 3.92 (1H, dd, 11.6, 4.8) 68.1 (d) 

2 1.87 (1H, m) 31.1 (t) 1.82 (1H, dtd, 12.5, 5.2, 2.7) 31.0 (t) 

 1.59 (1H, m)  1.58 (qd (12.2, 5.7)  

3 2.27 (1H, m) 29.8 (t) 2.27 (1H, m) 29.7 (t) 

 2.44 (1H, m)  2.27 (1H, m)  

4 - 145.3 (s) - 145.4 (s) 

5 1.83 (1H, d, 10.5) 61.7 (d) 1.82 (1H, d, 10.2) 61.6 (d)  

6 3.50 (1H, t, 10.5) 67.2 (d) 3.49 (1H, t, 10.0) 67.1 (d) 

7 1.23 (1H, m) 49.1 (d) 1.22 (1H, 12.5, 2.6) 49.0 (d) 

8 1.45 (1H, m) 18.0 (t) 1.45 (1H, dq, 13.4, 3.4) 18.0 (t) 

 1.27 (1H, d, 3.5)  1.26 (1H, qd, 12.9, 3.2)  

9 2.04 (1H, dt, 14.0, 3.0) 34.4 (t) 2.04 (1H, dt, 14.0, 3.2) 34.3 (t) 

 1.03 (1H, dt, 14.0, 4.0)  1.02 (1H, td, 13.7, 3.9)  

10 - 40.2 (s) - 40.1 (s) 

11 2.21 (1H, m) 26.5 (d) 2.19 (1H, dd, 7.1, 2.5) 26.4 (d) 

12 0.93 (3H, d, 7.5) 21.0 (q) 0.92 (3H, d, 7.1) 20.9 (q) 

13 0.83 (3H, d, 6.5) 16.3 (q) 0.82 (3H, d, 7.0) 16.2 (q) 

14 0.85 (3H, s) 21,4 (q) 0.84 (3H, s) 21.3 (q) 

15 4.96 (1H, t, 1.5) 114.3 (t) 4.95 (1H, brt, 2.1) 114.2 (t) 

 4.82 (1H, t, 2.0)  4.81 (1H, brt, 2.0)  

*Measured in CDCl3 (500 MHz for 
1
H and 125 MHz for 

13
C) 

 

NMR spectra of 2 to those of 6α-Hydroxy-eudesm-

4(15)-en-1-one, isolated from the twigs A. grandis 

(Inada et al., 2002), revealed that the structures of the  

two compounds were very similar, consequently 2 was 

identified as 6α-hydroxy-eudesm-4(15)-en-1-one, 

which found from this plant for the first time. 

 

Table 2.  Comparison of NMR data between 2 and 6α-Hydroxy-eudesm-4(15)-en-1-one 

Position 

Carbon 

2* 6α-Hydroxy-eudesm-4(15)-en-1-one** 

dH (∑H, mult., J= Hz) dC (mult.) dH (∑H, mult., J= Hz) dC (mult.) 

1 - 213.5 (s) - 213.2 (s) 

2 2.40 (1H, m) 38.4 (t) 2.39-2.42 (1H, m) 38.3 (t) 

 2.67 (1H, dd, 13.0, 

5.0) 

 2.67 (1H, ddd, 14.4, 12.4, 

5.3) 

 

3 2.37 (1H, m) 35.5 (t) 2.35-2.38 (1H, m) 35.4 (t) 

 2.59 (1H, m)  2.58-2.63 (1H, m)  

4 - 144.1 (s) - 144.4 (s) 

5 2.14 (1H, d, 7.0) 55.6 (d) 2.12 (1H, d, 9.8) 55.5 (d) 

6 3.81 (1H, t, 10.0) 67.1 (d) 3.83 (1H, dd, 9.8, 9.8) 67.1 (d) 

7 1.26 (1H, m) 49.1 (d) 1.25-1.30 (1H, m) 49.1 (d) 

8 1.18 (1H, m) 17.9 (t) 1.16-1.24 (1H, m) 17.9 (t) 

 1.59 (1H, m)  1.59-1.62 (1H, m)  

9 1.56 (1H, m) 31.5 (t) 1.55-1.58 (1H, m) 31.5 (t) 

 1.80 (1H, m)  1.78-1.82 (1H, m)  

10 - 50.2 (s) - 50.1 (s) 

11 2.23 (1H, m) 26.0 (d) 2.21-2.26 (1H, m) 26.0 (d) 

12 0.95 (3H, d, 7.0) 21.1 (q) 0.88 (3H, d, 7.0) 16.2 (q) 

13 0.86 (3H, d, 7.0) 16.2 (q) 0.96 (3H, d, 7.0) 21.0 (q) 

14 0.98 (3H, s) 18.0 (q) 1.00 (3H, s) 17.9 (q) 

15 4.99 (1H, s) 110.2 (t) 5.00 (1H, d, 0.8) 110.1 (t) 

 5.25 (1H, s)  5.26 (1H, d, 0.8)  

*Measured in CDCl3 (500 MHz for 
1
H and 125 MHz for 

13
C) 

**Measured in CDCl3 (500 MHz for 
1
H and 125 MHz for 

13
C) 
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Table 3.  NMR spectral data for compounds 3-5 

Position 

Carbon 

3* 4* 5** 

dH [∑H, mult., 

J (Hz)] 

dC 

(mult.) 

dH [∑H, mult., J 

(Hz)] 

dC 

(mult.) 

dH [∑H, mult., J (Hz)] dC 

(mult.) 

1 1.89 (1H, m) 40.0 (t) 1.43 (1H, m) 33.7 (t) 1.30 (1H, m) 33.7 (t) 

 1.46 (1H, m)  1.30 (1H, m)  1.37 (1H, m)  

2 2.47 (1H, m) 34.2 (t) 1.96 (1H, m) 25.4 (t) 1.56 (1H, m) 25.4 (t) 

 1.80 (1H, m)  1.55 (1H, m)  1.93 (1H, m)  

3 - 218.4 (s) 3.38 (1H, t, 2.8) 76.4 (d) 3.39 (1H, br.s) 76.3 (d) 

4 - 47.5 (s) - 37.7 (s) - 37.7 (s) 

5 1.22 (1H, m) 55.4 (d) 1.25 (1H, m) 49.6 (d) 1.24 (1H, s) 49.4 (d) 

6 1.38 (1H, m) 19.7 (d) 1.42 (1H, m) 18.3 (d) 1.39 (1H, m) 18.3 (t) 

 1.54 (1H, m)  1.62 (1H, m)  1.60 (1H, m)  

7 1.66 (1H, m) 49.1 (t) 1.59 (1H, m) 35.2 (t) 1.26 (1H, m) 35.2 (t) 

 1.26 (1H, m)  1.25 (1H, m)  1.58 (1H, m)  

8 - 40.4 (s) - 40.7 (s) - 50.3 (s) 

9 1.47 (1H, m) 50.2 (d) 1.46 (1H, m) 50.7 (d) 1.44 (1H, m) 50.4 (d) 

10 - 36.9 (s) - 37.3 (s) - 37.3 (s) 

11 1.52 (1H, m) 26.0 (t) 1.54 (1H, m) 21.7 (t) 1.20 (1H, m) 26.9 (t) 

 1.80 (1H, m)  1.19 (1H, m)  1.74 (1H, m)  

12 1.72 (1H, m) 27.1 (t) 1.76 (1H, m) 27.1 (t) 1.22 (1H, m) 21.3 (t) 

 2.04 (1H, m)  1.80 (1H, m)  1.53 (1H, m)  

13 1.64 (1H, m) 43.0 (d) 1.65 (1H, m) 42.9 (d) 1.55 (1H, m) 43.2 (d) 

14 - 50.1 (s) - 50.2 (s) - 40.6 (s) 

15 1.06 (1H, m) 31.5 (t) 1.46 (1H, m) 31.5 (t) 1.09 (1H, m) 31.2 (t) 

 1.80 (1H, m)  1.10 (1H, m)  1.50 (1H, m)  

16 1.58 (1H, m) 25.9 (t) 1.78 (1H, m) 25.9 (t) 1.29 (1H, m) 25.1 (t) 

 2.02 (1H, m)  1.29 (1H, m)  1.80 (1H, m)  

17 1.47 (1H, m) 49.8 (d) 1.47 (1H, s) 49.8 (d) 1.97 (1H, td, 11.0, 6.5) 49.6 (d) 

18 0.93 (3H, s) 15.3 (q) 0.96 (3H, s) 15.6 (q) 0.93 (3H, s) 15.6 (q) 

19 1.03 (3H, s) 16.2 (q) 0.87 (3H, s) 16.2 (q) 0.84 (3H, s) 16.1 (q) 

20 - 86.6 (s) - 86.7 (s) - 90.3 (s) 

21 1.14 (3H, s) 27.3 (q) 1.13 (3H, s) 27.3 (q) 1.34 (3H, s) 25.4 (q) 

22 1.31 (1H, m) 34.8 (t) 1.59 (1H, m) 34.8 (t) 1.92 (1H, m) 31.2 (t) 

 1.80 (1H, m)  1.23 (1H, m)  2.10 (1H, ddd, 12.5, 

10.0, 9.5) 

 

23 1.92 (1H, m) 26.4 (t) 1.86 (1H, m) 26.4 (t) 2.52 (1H, ddd, 18.0, 

10.0, 4.5) 

29.2 (t) 

 2.42 (1H, m)  1.76 (1H, m)  2.65 (1H, 18.0, 10.0, 

9.0) 

 

24 3.63 (1H, dd, 

9.6, 5.2) 

86.4 (d) 3.62 (1H, dd, 

10.0, 5.6) 

86.3 (d) - 176.9 (s) 

25 - 70.3 (s) - 70.3 (s)  - 

26 1.18 (3H, s) 27.9 (q) 1.17 (3H, s) 27.9 (q)  - 

27 1.10 (3H, s) 24.1 (q) 1.09 (3H, s) 24.1 (q)  - 

28 1.07 (3H, s) 26.8 (q) 0.95 (3H, s) 28.4 (q) 0.91 (3H, s) 28.4 (q) 

29 1.00 (3H, s) 21.1 (q) 0.85 (3H, s) 22.2 (q) 0.82 (3H, s) 22.2 (q) 

30 0.87 (3H, s) 16.4 (q) 0.87 (3H, s) 16.6 (q) 0.87 (3H, s) 16.4 (q) 

*400 MHz for 
1
H and 100 MHz for 

13
C in CDCl3, **500 MHz for 

1
H and 125 MHz for 

13
C in CDCl3. 

 

 Compound 3 was obtained as a white crystal. The 

molecular formula of 3 was identified as C30H50O3 

based on the HR-TOFMS m/z 481.3632 [M+Na]
+
, 

calculated for C30H50O3Na, m/z 481.3658, thus 

required six degree of unsaturation. The IR spectra 

showed the presences of hydroxyl (3384 cm
-1
), 

aliphatic  (2945 cm
-1
),  carbonyl (1698 cm

-1
), and 

gem-dimethyl (1374 cm
-1
). 

1
H-NMR spectrum showed 

the  presenc e of  eight tertiary methyl signals at δH 

0.87  (3H, s, Me-30), 1.03 (3H,  s,  Me -19),  0.93 

(3H, s, Me -18), 1.00 (3H, s, Me-29), 1.07 (3H, s, Me-

28), 1.10 (3H, s,  Me-27), 1.14 (3H, s,  Me -21)  and  

1.18 (3H, s, Me-26), which indicate the characteristic 

for dammarane-type triterpenoid (Harneti et al., 

2014). An oxygenated sp
3
 methine in part of 

tetrahydrofuran ring at δH 3.63 (1H, dd, J=5.2, 9.6 

Hz) was also revealed in the 
1
H-NMR spectra, 

supporting the presence of dammarane-type 

triterpenoid structure in 3.  
13

C-NMR spectrum with  

DEPT  measurements  showed  the  presence of thirty 

carbon signals consisting of eight methyls, ten 

methylenes, six methines, and six quaternary carbons, 

indicating the presence of dammarane-type 

triterpenoid (Harneti et al., 2014).  
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Table 4.  Cytotoxic activity of compounds 1-5 

Compounds 
HeLa Cells 

IC50 (μg/mL) 

DU145 Cells 

IC50 (μg/mL) 

1 3544.00 971.69 

2 9010.62 16883.7 

3 712.75 991.56 

4 105.08 168.59 

5 

Cisplatin  

6913.00 

19.00 

591.06 

53.00 

 

The presence of eight methyl resonances at δC 15.3 

(C-18), 16.2 (C-19), 27.3 (C-21), 27.9 (C-26), 24.1 

(C-27), 26.8 (C-28), 21.1 (C-29) and 16.4 (C-30), a 

carbonyl group at δC 218.4 (C-3), as well as two 

oxygenated quaternary carbon at δC 86.4 (C-24) and 

86.6 (C-20), supporting the presence of dammarane-

type triterpenoid with the addition of tetrahydrofuran 

ring (Roux et al., 1998). The position of the carbonyl 

group is at C-3 considered from its biosynthetic 

approached. Compound 3 showed δC 86.4 and δH 

3.63 (1H, dd, J=5.2, 9.6 Hz), as well as δC 86.6 for 

C-20, consequently configuration for C-20 and C-24 

are S orientation (Aalbersberg & Singh, 1991; Roux et 

al., 1998; Harneti et al., 2012). Comparison of the 

NMR data of 3 with those of the 20S,24S-epoxy-25-

hydroxydammarane-3-one isolated from Dysoxylum 

malabaricum (Hisham, Bai, Fuzimoto, Hara, & 

Shimada, 1996)  revealed  that the structures of the 

two compounds are closely related, consequently 3 

was identified as the 20S,24S-epoxy-25-

hydroxydammarane-3-one, which found from this 

plant for the first time. Compound 4 was obtained as 

a white crystal. 

 The NMR data of 4 had a fairly identical pattern to 

those of 3. The main differences are the absence of 

one of the carbonyl group and the presence of a 

hydroxyl group at δC 76.4 (C-3). A methine proton at 

C-3 has a 
3
J 2.8Hz, indicating that H-2 and H-3 have 

axial-equatorial orientation consequently, 3-OH has α 

orientation (Hidayat et al., 2018). Thus, 4 was 

identified as the 20S,24S-epoxydammarane-3α,25-

diol (Hisham et al., 1996). 

Compound 5 was obtained as a white crystal. The 

13
C-NMR spectra showed 27 carbons and were 

classified by the DEPT 135
o 

experiment as six methyl 

groups, one carbonyl lactone at δC 176.9 (C-24), an 

oxymethine group at δC 76.3 (C-3), and an 

oxygenated quaternary carbon at δC 90.3 (C-20). 

These suggested that the loss of two methyl groups 

from the side chain by oxidative degradation leading 

to the formation of the γ-lactone (Rao, Meshulam, 

Zeln, & Lavie, 1975), exhibiting the characteristics of 

tris nor-triterpenoid compounds. This compound was 

found to be identically obtained by the oxidation of 4 

(Figure 2). Thus, 5 was identified as 3α-epi-

cabraleahydroxy lactone (Phongmaykin, Kumamoto, 

Ishikawa, Suttisri,  & Saifah, 2008). 

The cytotoxic activity of 1-5 isolated from the stem 

bark of A. elaeagnoidea against cervical cancer cells 

HeLa and prostate cancer DU145 has been tested 

(Table 4). Among the triterpenoid compounds, 4 

showed moderately activity (Widiyastuti, Sholikhah, & 

Haryanti, 2019) with IC50 values of 105.08 and 

168.59 µg/mL, whereas 3 and 5 showed no activity, 

indicated the presence of hydroxyl groups at C-3 and 

C-25 play important role for cytotoxic activity in the 

triterpenoid structure. Furthermore, sesquiterpenoids, 

1 and 2 showed no activity against both cancer cell 

lines. 

 

CONCLUSIONS 

Five terpenoids namely, two eudesmane-type 

sesquiterpenoids, 5-epi-eudesm-4(15)-ene-1β,6β-diol 

(1), and 6α-Hydroxy-eudesm-4(15)-en-1-one (2), as 

well as three dammarane-type triterpenoids, 20S,24S-

epoxy-25-hydroxydammarane-3-one (3), 20S,24S-

epoxydammarane-3α,25-diol (4), 3α-epi-

cabraleahydroxy lactone (5) has been isolated from 

ethyl acetate extract of the stem bark of A. 

elaeagnoidea for the first time. 20S,24S-

epoxydammarane-3α,25-diol (4), showed the 

stronger cytotoxic activity than other compounds 

against HeLa cervical cancer and DU145 prostate 

cancer lines, indicated that the cytotoxic activity are 

influenced by the presence of hydroxyl group. 
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